Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2313755120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983504

RESUMEN

The complex, systemic pathology of sickle cell disease is driven by multiple mechanisms including red blood cells (RBCs) stiffened by polymerized fibers of deoxygenated sickle hemoglobin. A critical step toward understanding the pathologic role of polymer-containing RBCs is quantifying the biophysical changes in these cells in physiologically relevant oxygen environments. We have developed a microfluidic platform capable of simultaneously measuring single RBC deformability and oxygen saturation under controlled oxygen and shear stress. We found that RBCs with detectable amounts of polymer have decreased oxygen affinity and decreased deformability. Surprisingly, the deformability of the polymer-containing cells is oxygen-independent, while the fraction of these cells increases as oxygen decreases. We also find that some fraction of these cells is present at most physiologic oxygen tensions, suggesting a role for these cells in the systemic pathologies. Additionally, the ability to measure these pathological cells should provide clearer targets for evaluating therapies.


Asunto(s)
Anemia de Células Falciformes , Saturación de Oxígeno , Humanos , Eritrocitos , Deformación Eritrocítica , Polímeros , Oxígeno
2.
Nat Commun ; 14(1): 5850, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730674

RESUMEN

We previously reported initial clinical results of post-transcriptional gene silencing of BCL11A expression (NCT03282656) reversing the fetal to adult hemoglobin switch. A goal of this approach is to increase fetal hemoglobin (HbF) expression while coordinately reducing sickle hemoglobin (HbS) expression. The resulting combinatorial effect should prove effective in inhibiting HbS polymerization at lower physiologic oxygen values thereby mitigating disease complications. Here we report results of exploratory single-cell analysis of patients in which BCL11A is targeted molecularly and compare results with cells of patients treated with hydroxyurea (HU), the current standard of care. We use single-cell assays to assess HbF, HbS, oxygen saturation, and hemoglobin polymer content in RBCs for nine gene therapy trial subjects (BCLshmiR, median HbF% = 27.9) and compare them to 10 HU-treated subjects demonstrating high and comparable levels of HbF (HU High Responders, median HbF% = 27.0). All BCL11A patients achieved the primary endpoint for NCT03282656, which was defined by an absolute neutrophil count greater than or equal to 0.5 × 109 cells/L for three consecutive days, achieved within 7 weeks following infusion. Flow cytometric assessment of single-RBC HbF and HbS shows fewer RBCs with high HbS% that would be most susceptible to sickling in BCLshmiR vs. HU High Responders: median 42% of RBCs with HbS%>70% in BCLshmiR vs. 61% in HU High Responders (p = 0.004). BCLshmiR subjects also demonstrate more RBCs resistant to HbS polymerization at lower physiologic oxygen tension: median 32% vs. 25% in HU High Responders (p = 0.006). Gene therapy-induced BCL11A down-regulation reverses the fetal-to-adult hemoglobin switch and induces RBCs with higher HbF%, lower HbS%, and greater resistance to deoxygenation-induced polymerization in clinical trial subjects compared with a cohort of highly responsive hydroxyurea-treated subjects.


Asunto(s)
Hemoglobina Falciforme , Hidroxiurea , Adulto , Humanos , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Eritrocitos , Feto , Hemoglobina Fetal/genética , Factores de Transcripción
3.
Biomacromolecules ; 23(9): 3822-3830, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35944154

RESUMEN

The molecular origin of sickle cell disease (SCD) has been known since 1949, but treatments remain limited. We present the first high-throughput screening (HTS) platform for discovering small molecules that directly inhibit sickle hemoglobin (HbS) oligomerization and improve blood flow, potentially overcoming a long-standing bottleneck in SCD drug discovery. We show that at concentrations far below the threshold for nucleation and rapid polymerization, deoxygenated HbS forms small assemblies of multiple α2ß2 tetramers. Our HTS platform leverages high-sensitivity fluorescence lifetime measurements that monitor these temporally stable prefibrillar HbS oligomers. We show that this approach is sensitive to compounds that inhibit HbS polymerization with or without modulating hemoglobin oxygen binding affinity. We also report the results of a pilot small-molecule screen in which we discovered and validated several novel inhibitors of HbS oligomerization.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Descubrimiento de Drogas , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobinas , Humanos , Oxígeno/metabolismo
4.
Haematologica ; 107(6): 1438-1447, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706495

RESUMEN

Sickle cell disease (SCD) is characterized by sickle hemoglobin (HbS) which polymerizes under deoxygenated conditions to form a stiff, sickled erythrocyte. The dehydration of sickle erythrocytes increases intracellular HbS concentration and the propensity of erythrocyte sickling. Prevention of this mechanism may provide a target for potential SCD therapy investigation. Ionophores such as monensin can increase erythrocyte sodium permeability by facilitating its transmembrane transport, leading to osmotic swelling of the erythrocyte and decreased hemoglobin concentration. In this study, we treated 13 blood samples from patients with SCD with 10 nM of monensin ex vivo. We measured changes in cell volume and hemoglobin concentration in response to monensin treatment, and we perfused treated blood samples through a microfluidic device that permits quantification of blood flow under controlled hypoxia. Monensin treatment led to increases in cell volume and reductions in hemoglobin concentration in most blood samples, though the degree of response varied across samples. Monensin-treated samples also demonstrated reduced blood flow impairment under hypoxic conditions relative to untreated controls. Moreover, there was a significant correlation between the improvement in blood flow and the decrease in hemoglobin concentration. Thus, our results demonstrate that a reduction in intracellular HbS concentration by osmotic swelling improves blood flow under hypoxic conditions. Although the toxicity of monensin will likely prevent it from being a viable clinical treatment, these results suggest that osmotic swelling should be investigated further as a potential mechanism for SCD therapy.


Asunto(s)
Anemia de Células Falciformes , Eritrocitos , Ionóforos , Monensina , Anemia de Células Falciformes/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Hemoglobina Falciforme , Humanos , Hipoxia , Ionóforos/farmacología , Ionóforos/uso terapéutico , Monensina/farmacología , Monensina/uso terapéutico
5.
Sci Rep ; 11(1): 12153, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108499

RESUMEN

Arteriovenous grafts are routinely placed to facilitate hemodialysis in patients with end stage renal disease. These grafts are conduits between higher pressure arteries and lower pressure veins. The connection on the vein end of the graft, known as the graft-to-vein anastomosis, fails frequently and chronically due to high rates of stenosis and thrombosis. These failures are widely believed to be associated with pathologically high and low flow shear strain rates at the graft-to-vein anastomosis. We hypothesized that consistent with pipe flow dynamics and prior work exploring vein-to-artery anastomosis angles in arteriovenous fistulas, altering the graft-to-vein anastomosis angle can reduce the incidence of pathological shear rate fields. We tested this via computational fluid dynamic simulations of idealized arteriovenous grafts, using the Bird-Carreau constitutive law for blood. We observed that low graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically low shear rates, and that high graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically high shear rates. Optimizations predicted that an intermediate  ([Formula: see text]) graft-to-anastomosis angle was optimal. Our study demonstrates that graft-to-vein anastomosis angles can significantly impact pathological flow fields, and can be optimized to substantially improve arteriovenous graft patency rates.


Asunto(s)
Anastomosis Arteriovenosa/cirugía , Fístula Arteriovenosa/prevención & control , Derivación Arteriovenosa Quirúrgica/normas , Simulación por Computador , Fallo Renal Crónico/terapia , Modelos Cardiovasculares , Diálisis Renal/efectos adversos , Fístula Arteriovenosa/etiología , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...