Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Res Food Sci ; 3: 243-255, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33251526

RESUMEN

Apple juice is typically marketed as a clear juice, and hence enzymatic treatments are common practices in juice industry. However, enzymatic treatments have been shown to face some challenges when process efficiency, and cost effectiveness are concerned. Therefore, it is necessary to optimize the enzymatic treatment process to maximize efficiency, and reuse enzymes to minimize the overall cost via immobilization. In this context, the present work features the immobilization of pectinase and xylanase from M. hiemalis on genipin-activated alginate beads, with subsequent evaluation of its efficacy in apple juice clarification. A central composite rotatable design (CCRD), coupled with artificial neural network (ANN) for modeling and optimization was used to design the experiments. Deploying a coupling time up to 120 min, and an agitation rate of 213 rpm (pectinase) - 250 rpm (xylanase), a maximum fractional enzyme activity recovered was observed to be about 81-83% for both enzymes. Optimum enzyme loading and genipin concentration were found to be 50 U/ml and 12% (w/v), respectively. The immobilized enzyme preparations were suitable for up to 5 repeated process cycles, losing about 45% (pectinase) - 49% (xylanase) of their initial activity during this time. The maximum clarity of apple juice (%T660, 84%) was achieved at 100 min when pectinase (50 U/ml of juice) and xylanase (20 U/ml of juice) were used in combination at 57 °C. The immobilized enzymes are of industrial relevance in terms of biocompatibility, recoverability, and operational-storage stability.

2.
Molecules ; 25(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344706

RESUMEN

Seaweeds are a rich source of protein and can contain up to 47% on the dry weight basis. It is challenging to extract proteins from the raw biomass of seaweed due to resilient cell-wall complexes. Four species of macroalgae were used in this study-two brown, Fucus vesiculosus and Alaria esculenta, and two red, Palmaria palmata and Chondrus crispus. Three treatments were applied individually to the macroalgal species: (I) high-pressure processing (HPP); (II) laboratory autoclave processing and (III) a classical sonication and salting out method. The protein, ash and lipid contents of the resulting extracts were estimated. Yields of protein recovered ranged from 3.2% for Fucus vesiculosus pre-treated with high pressure processing to 28.9% protein recovered for Chondrus crispus treated with the classical method. The yields of protein recovered using the classical, HPP and autoclave pre-treatments applied to Fucus vesiculosus were 35.1, 23.7% and 24.3%, respectively; yields from Alaria esculenta were 18.2%, 15.0% and 17.1% respectively; yields from Palmaria palmata were 12.5%, 14.9% and 21.5% respectively, and finally, yields from Chondrus crispus were 35.2%, 16.1% and 21.9%, respectively. These results demonstrate that while macroalgal proteins may be extracted using either physical or enzymatic methods, the specific extraction procedure should be tailored to individual species.


Asunto(s)
Fraccionamiento Químico , Proteínas/química , Proteínas/aislamiento & purificación , Algas Marinas/química , Aminoácidos/química , Fraccionamiento Químico/métodos , Lípidos/química , Solubilidad
3.
Waste Manag ; 105: 240-247, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088570

RESUMEN

This paper deals with the investigation of ultrasound (US) pretreatment of brewer's spent grain (BSG) as a means of releasing fermentable sugars, and the subsequent production of ethanol from this lignocellulosic biomass. Using response surface methodology (RSM), the influence of US power, time, temperature and biomass loading on fermentable sugar yield from BSG was studied. The optimal conditions were found to be 20% US power, 60 min, 26.3 °C, and 17.3% w/v of biomass in water. Under these conditions, an approximate 2.1-fold increase in reducing sugar yield (325 ± 6 mg/g of biomass) was achieved, relative to untreated BSG (151.1 ± 10 mg/g of biomass). In contrast to acid or alkaline pretreatment approaches, the use of water obviated the need for neutralization for the recovery of sugars. The characterization of native and pretreated BSG was performed by HPLC, FTIR, SEM and DSC. Fermentation studies using S. cerevisiae growing on pretreated BSG resulted in a conversion of 66% of the total sugar content ininto ethanol with an ethanol content of 17.73 ± 2 g/ 100 g of pretreated BSG. These results suggest that ultrasound pretreatment is a promising technology for increased valorization of BSG as a feedstock for production of bioethanol, and points ton the need for further work in this area.


Asunto(s)
Saccharomyces cerevisiae , Sonicación , Biomasa , Grano Comestible , Fermentación
4.
Foods ; 8(11)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744199

RESUMEN

In this study, spent coffee waste (SCW) was used as the sole carbon source for xylanase production in solid state fermentation mode using Aspergillus niger. A Box-Behnken design was constructed using three parameters viz. temperature, initial moisture content, and log number of spores to determine the optimal fermentation condition. The best fermentation conditions for xylanase production were found to be incubation at 30 °C with an initial moisture content of 70% and using an inoculum of 6.5 × 106 spores/g of dry SCW. Furthermore, the design of experiments revealed that maintaining a medium composition of 0.2 g of yeast extract, 0.04 g of K2HPO4, and 0.03 g of MgSO4 increased xylanase production. Under optimised solid-state fermentation conditions an enzyme activity of 6495.6 IU/g of dry SCW was recorded, which was approximately 1.39-fold higher than that of control (4649 IU/g of dry SCW). The efficacy of the purified xylanase as a juice enrichment agent for strawberry, blueberry, and raspberry pulp was tested.

6.
Trends Biotechnol ; 37(3): 231-234, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049417

RESUMEN

Lignocellulosic biorefining processes plant-derived biomass into a range of bio-based products. Currently, more than 40 lignocellulosic biorefineries are operating across Europe. Here, we address the challenges and future opportunities of this nascent industry by elucidating key elements of the biorefining sector, including feedstock sourcing, processing methods, and the bioproducts market.


Asunto(s)
Biotecnología/métodos , Lignina/metabolismo , Biotransformación , Europa (Continente)
7.
Bioengineering (Basel) ; 5(4)2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30373279

RESUMEN

Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical⁻chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.

8.
Nanoscale ; 10(21): 9981-9986, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29770815

RESUMEN

Three-dimensional magnetic nanostructures are now attracting intense interest due to their potential as ultrahigh density future magnetic storage devices. Here, we report on the study of ultrafast magnetization dynamics of a complex three-dimensional magnetic nanostructure. Arrays of magnetic tetrapod structures were fabricated using a combination of two-photon lithography (TPL) and electrodeposition. All-optical time-resolved magneto-optical Kerr microscopy was exploited to probe the spin-wave modes from the junction of a single tetrapod structure. Micromagnetic simulations reveal that the nature of these modes originates from the intricate three-dimensional tetrapod structure. Our findings enhance the basic knowledge about the dynamic control of spin waves in complex three-dimensional magnetic elements which are imperative for the construction of modern spintronic devices.

9.
Bioresour Technol ; 262: 310-318, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29729930

RESUMEN

Pretreatment of lignocellulosic biomass to overcome its intrinsic recalcitrant nature prior to the production of valuable chemicals has been studied for nearly 200 years. Research has targeted eco-friendly, economical and time-effective solutions, together with a simplified large-scale operational approach. Commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Recently, advances in applied chemistry approaches conducted under extreme and non-classical conditions has led to possible commercial solutions in the marketplace (e.g. High hydrostatic pressure, High pressure homogenizer, Microwave, Ultrasound technologies). These new industrial technologies are promising candidates as sustainable green pretreatment solutions for lignocellulosic biomass utilization in a large scale biorefinery. This article reviews the application of selected emerging technologies such as ionizing and non-ionizing radiation, pulsed electrical field, ultrasound and high pressure as promising technologies in the valorization of lignocellulosic biomass.


Asunto(s)
Celulosa , Lignina , Biomasa
10.
Biotechnol Prog ; 31(3): 849-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25864556

RESUMEN

The morphological quantification of filamentous microbes represents an important analytical technique in the optimization of bioprocesses involving such organisms, given the demonstrated links between morphology and metabolite yield. However, in many studies, much of this quantification has required some degree of manual intervention, if it has been conducted at all, burdening biotechnologists with a time-consuming process and potentially introducing bias into analyses. Here, software for the automated quantification of filamentous microbes is presented, implemented as a plug-in for the widely used, freely available image analysis package, ImageJ. The software, together with all related source code, documentation and test data, is freely available to the community via an online repository.


Asunto(s)
Biotecnología/métodos , Hongos/crecimiento & desarrollo , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente
11.
J Ind Microbiol Biotechnol ; 36(6): 787-800, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19277741

RESUMEN

Mycelial morphology is a critically important process property in industrial fermentations of filamentous micro-organisms, as particular phenotypes are associated with maximum productivity. However, the accurate quantification of complex morphologies still represents a significant challenge in elucidating this relationship. A system has been developed for high-resolution characterisation of filamentous fungal growth on a solid substrate, using membrane immobilization and fully-automatic plug-ins developed for the public domain, Java-based, image-processing software, ImageJ. The system has been used to quantify the microscopic development of Aspergillus oryzae on malt agar, by measuring spore projected area and circularity, the total length of a hyphal element, the number of tips per element, and the hyphal growth unit. Two different stages of growth are described, from the swelling of a population of conidiospores up to fully developed, branched hyphae 24 h after inoculation. Spore swelling expressed as an increase in mean equivalent spore diameter was found to be approximately linear with time. Widespread germination of spores was observed by 8 h after inoculation. From approximately 12 h, the number of tips was found to increase exponentially. The specific growth rate of a population of hyphae was calculated as approximately 0.24-0.27 h(-1). A wide variation in growth kinetics was found within the population. The robustness of the image-analysis system was verified by testing the effect of small variations in the input data.


Asunto(s)
Aspergillus oryzae/crecimiento & desarrollo , Técnicas de Cultivo , Procesamiento de Imagen Asistido por Computador , Aspergillus oryzae/química , Hifa/química , Hifa/crecimiento & desarrollo , Cinética , Membranas Artificiales , Esporas Fúngicas/química , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA