Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 105(3-1): 034301, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428139

RESUMEN

Many of the biological, social and man-made networks around us are inherently dynamic, with their links switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution, and understand how information and other relevant quantities propagate over them, the inclusion of both memory and dynamical dependencies between links is key. In this article we introduce a general class of models of temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case study, we then concentrate on a specific model within this class, which allows to generate temporal networks with a specified underlying structural backbone, and with precise control over the dynamical dependencies between links and the strength and length of their memories. In this network model the presence of each link is influenced not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix, which directly controls the causal relations, and hence the correlations, among links. We propose a maximum likelihood method for estimating the model's parameters from data, showing how the model allows a more realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly including also nonstationary network dynamics. We then use our network model to investigate the role that, both the features of memory and the type of correlations in the dynamics of links have on the properties of processes occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our results have implications in the study of opinion formation, the modeling of social networks, and the spreading of epidemics through mobile populations.

2.
Nat Commun ; 13(1): 499, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078990

RESUMEN

How to best define, detect and characterize network memory, i.e. the dependence of a network's structure on its past, is currently a matter of debate. Here we show that the memory of a temporal network is inherently multidimensional, and we introduce a mathematical framework for defining and efficiently estimating the microscopic shape of memory, which characterises how the activity of each link intertwines with the activities of all other links. We validate our methodology on a range of synthetic models, and we then study the memory shape of real-world temporal networks spanning social, technological and biological systems, finding that these networks display heterogeneous memory shapes. In particular, online and offline social networks are markedly different, with the latter showing richer memory and memory scales. Our theory also elucidates the phenomenon of emergent virtual loops and provides a novel methodology for exploring the dynamically rich structure of complex systems.

4.
Nat Commun ; 10(1): 2256, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164650

RESUMEN

In certain artistic endeavours-such as acting in films and TV, where unemployment rates hover at around 90%-sustained productivity (simply making a living) is probably a better proxy for quantifying success than high impact. Drawing on a worldwide database, here we study the temporal profiles of activity of actors and actresses. We show that the dynamics of job assignment is well described by a "rich-get-richer" mechanism and we find that, while the percentage of a career spent active is unpredictable, such activity is clustered. Moreover, productivity tends to be higher towards the beginning of a career and there are signals preceding the most productive year. Accordingly, we propose a machine learning method which predicts with 85% accuracy whether this "annus mirabilis" has passed, or if better days are still to come. We analyse actors and actresses separately, also providing compelling evidence of gender bias in show business.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...