Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep ; 42(10): 113165, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37751356

RESUMEN

Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca2+ levels to RGC death from axon injury. We find that axonal Ca2+ elevations from optic nerve injury do not propagate over distance or reach RGC somas, and acute and chronic Ca2+ dynamics do not affect RGC survival. Instead, we discover that baseline Ca2+ levels vary widely between RGCs and predict their survival after axon injury, and that lowering these levels reduces RGC survival. Further, we find that well-surviving RGC types have higher baseline Ca2+ levels than poorly surviving types. Finally, we observe considerable variation in the baseline Ca2+ levels of different RGCs of the same type, which are predictive of within-type differences in survival.


Asunto(s)
Traumatismos del Nervio Óptico , Humanos , Animales , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Calcio/metabolismo , Axones/metabolismo , Nervio Óptico/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad
2.
Curr Biol ; 31(21): 4870-4878.e5, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34534440

RESUMEN

Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.


Asunto(s)
Proteínas de Homeodominio , Pez Cebra , Animales , Diferenciación Celular/genética , Linaje de la Célula , Sistema Nervioso Central , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Ratones , Neuronas/fisiología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Neuron ; 109(9): 1527-1539.e4, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33784498

RESUMEN

Predators use vision to hunt, and hunting success is one of evolution's main selection pressures. However, how viewing strategies and visual systems are adapted to predation is unclear. Tracking predator-prey interactions of mice and crickets in 3D, we find that mice trace crickets with their binocular visual fields and that monocular mice are poor hunters. Mammalian binocular vision requires ipsi- and contralateral projections of retinal ganglion cells (RGCs) to the brain. Large-scale single-cell recordings and morphological reconstructions reveal that only a small subset (9 of 40+) of RGC types in the ventrotemporal mouse retina innervate ipsilateral brain areas (ipsi-RGCs). Selective ablation of ipsi-RGCs (<2% of RGCs) in the adult retina drastically reduces the hunting success of mice. Stimuli based on ethological observations indicate that five ipsi-RGC types reliably signal prey. Thus, viewing strategies align with a spatially restricted and cell-type-specific set of ipsi-RGCs that supports binocular vision to guide predation.


Asunto(s)
Percepción de Profundidad/fisiología , Conducta Predatoria/fisiología , Células Ganglionares de la Retina , Visión Binocular/fisiología , Animales , Lateralidad Funcional/fisiología , Ratones , Vías Visuales/citología , Vías Visuales/fisiología
4.
J Vis Exp ; (168)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33645555

RESUMEN

The retina transforms light signals from the environment into electrical signals that are propagated to the brain. Diseases of the retina are prevalent and cause visual impairment and blindness. Understanding how such diseases progress is critical to formulating new treatments. In vivo microscopy in animal models of disease is a powerful tool for understanding neurodegeneration and has led to important progress towards treatments of conditions ranging from Alzheimer's disease to stroke. Given that the retina is the only central nervous system structure inherently accessible by optical approaches, it naturally lends itself towards in vivo imaging. However, the native optics of the lens and cornea present some challenges for effective imaging access. This protocol outlines methods for in vivo two-photon imaging of cellular cohorts and structures in the mouse retina at cellular resolution, applicable for both acute- and chronic-duration imaging experiments. It presents examples of retinal ganglion cell (RGC), amacrine cell, microglial, and vascular imaging using a suite of labeling techniques including adeno-associated virus (AAV) vectors, transgenic mice, and inorganic dyes. Importantly, these techniques extend to all cell types of the retina, and suggested methods for accessing other cellular populations of interest are described. Also detailed are example strategies for manual image postprocessing for display and quantification. These techniques are directly applicable to studies of retinal function in health and disease.


Asunto(s)
Fotones , Pupila/fisiología , Retina/diagnóstico por imagen , Animales , Calcio/metabolismo , Dependovirus/metabolismo , Procesamiento de Imagen Asistido por Computador , Inyecciones Intravítreas , Ratones , Ratones Transgénicos , Microglía/citología , Células Ganglionares de la Retina/citología , Programas Informáticos
5.
Annu Rev Vis Sci ; 6: 195-213, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32936739

RESUMEN

The damage or loss of retinal ganglion cells (RGCs) and their axons accounts for the visual functional defects observed after traumatic injury, in degenerative diseases such as glaucoma, or in compressive optic neuropathies such as from optic glioma. By using optic nerve crush injury models, recent studies have revealed the cellular and molecular logic behind the regenerative failure of injured RGC axons in adult mammals and suggested several strategies with translational potential. This review summarizes these findings and discusses challenges for developing clinically applicable neural repair strategies.


Asunto(s)
Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/fisiología , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Compresión Nerviosa , Enfermedades del Nervio Óptico
6.
Neuron ; 103(1): 39-51.e5, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31122676

RESUMEN

Despite robust effects on immature neurons, growth factors minimally promote axon regeneration in the adult central nervous system (CNS). Attempting to improve growth-factor responsiveness in mature neurons by dedifferentiation, we overexpressed Lin28 in the retina. Lin28-treated retinas responded to insulin-like growth factor-1 (IGF1) by initiating retinal ganglion cell (RGC) axon regeneration after axotomy. Surprisingly, this effect was cell non-autonomous. Lin28 expression was required only in amacrine cells, inhibitory neurons that innervate RGCs. Ultimately, we found that optic-nerve crush pathologically upregulated activity in amacrine cells, which reduced RGC electrical activity and suppressed growth-factor signaling. Silencing amacrine cells or pharmacologically blocking inhibitory neurotransmission also induced IGF1 competence. Remarkably, RGCs regenerating across these manipulations localized IGF1 receptor to their primary cilia, which maintained their signaling competence and regenerative ability. Thus, our results reveal a circuit-based mechanism that regulates CNS axon regeneration and implicate primary cilia as a regenerative signaling hub.


Asunto(s)
Axones/fisiología , Factor de Crecimiento Nervioso/fisiología , Regeneración Nerviosa/fisiología , Receptores Presinapticos/fisiología , Células Amacrinas/fisiología , Animales , Cilios/metabolismo , Cilios/ultraestructura , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Traumatismos del Nervio Óptico/patología , Proteínas de Unión al ARN/genética , Receptor IGF Tipo 1/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos
7.
Neuron ; 101(4): 615-624.e5, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30686733

RESUMEN

Axon loss determines persistent disability in multiple sclerosis patients. Here, we use in vivo calcium imaging in a multiple sclerosis model to show that cytoplasmic calcium levels determine the choice between axon loss and survival. We rule out the endoplasmic reticulum, glutamate excitotoxicity, and the reversal of the sodium-calcium exchanger as sources of intra-axonal calcium accumulation and instead identify nanoscale ruptures of the axonal plasma membrane as the critical path of calcium entry.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Membrana Celular/patología , Esclerosis Múltiple/metabolismo , Animales , Axones/patología , Membrana Celular/metabolismo , Femenino , Transporte Iónico , Masculino , Ratones , Esclerosis Múltiple/etiología
8.
Cell ; 171(2): 440-455.e14, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942925

RESUMEN

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.


Asunto(s)
Médula Cervical/fisiología , Destreza Motora , Vías Nerviosas , Animales , Calcio/análisis , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Médula Cervical/citología , Miembro Anterior/fisiología , Articulaciones/fisiología , Ratones , Ratones Endogámicos C57BL
9.
Neuron ; 95(4): 817-833.e4, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817801

RESUMEN

A major hurdle for functional recovery after both spinal cord injury and cortical stroke is the limited regrowth of the axons in the corticospinal tract (CST) that originate in the motor cortex and innervate the spinal cord. Despite recent advances in engaging the intrinsic mechanisms that control CST regrowth, it remains to be tested whether such methods can promote functional recovery in translatable settings. Here we show that post-lesional AAV-assisted co-expression of two soluble proteins, namely insulin-like growth factor 1 (IGF1) and osteopontin (OPN), in cortical neurons leads to robust CST regrowth and the recovery of CST-dependent behavioral performance after both T10 lateral spinal hemisection and a unilateral cortical stroke. In these mice, a compound able to increase axon conduction, 4-aminopyridine-3-methanol, promotes further improvement in CST-dependent behavioral tasks. Thus, our results demonstrate a potentially translatable strategy for restoring cortical dependent function after injury in the adult.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Neuronas/efectos de los fármacos , Osteopontina/uso terapéutico , Tractos Piramidales/patología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Factores de Edad , Aminopiridinas/farmacología , Animales , Axotomía , Modelos Animales de Enfermedad , Lateralidad Funcional , Miembro Posterior/fisiopatología , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Osteopontina/farmacología , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Recuperación de la Función/fisiología , Reflejo/efectos de los fármacos , Reflejo/genética , Serotonina/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Factores de Tiempo
10.
EMBO J ; 36(9): 1134-1146, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28258061

RESUMEN

Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool.


Asunto(s)
Diferenciación Celular , División Celular , Neurogénesis , Retina/embriología , Células Bipolares de la Retina/fisiología , Pez Cebra/embriología , Animales
11.
Science ; 354(6312): 544-545, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811250
12.
Neuron ; 88(4): 704-19, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26526391

RESUMEN

After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated growth cone re-formation in vitro and enhanced the initiation and elongation of axon re-growth after optic nerve injury. These effects depended on both the microtubule (MT)-binding domain and the serine-proline-rich (S/P-rich) region of DCXs in-cis in the same molecules. While the MT-binding domain is known to stabilize MT structures, we show that the S/P-rich region prevents F-actin destabilization in injured axon stumps. Additionally, while DCXs synergize with mTOR to stimulate axon regeneration, alone they can promote neuronal survival possibly by regulating the retrograde propagation of injury signals. Multifunctional DCXs thus represent potential targets for promoting both survival and regeneration of injured neurons.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Microtúbulos/metabolismo , Regeneración Nerviosa/genética , Proteínas Serina-Treonina Quinasas/genética , Células Ganglionares de la Retina/metabolismo , Animales , Axones/fisiología , Axotomía , Supervivencia Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Conos de Crecimiento , Técnicas In Vitro , Ratones , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Traumatismos del Nervio Óptico , Proteínas Serina-Treonina Quinasas/metabolismo , Células Ganglionares de la Retina/fisiología , Serina-Treonina Quinasas TOR/metabolismo
14.
Nat Commun ; 5: 5683, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25511170

RESUMEN

Therapeutic strategies for spinal cord injury (SCI) commonly focus on regenerating disconnected axons. An alternative approach would be to maintain continuity of damaged axons, especially after contusion. The viability of such neuropreservative strategies depends on the degree to which initially injured axons can recover. Here we use morphological and molecular in vivo imaging after contusion SCI in mice to show that injured axons persist in a metastable state for hours. Intra-axonal calcium dynamics influence fate, but the outcome is not invariably destructive in that many axons with calcium elevations recover homeostasis without intervention. Calcium enters axons primarily through mechanopores. Spontaneous pore resealing allows calcium levels to normalize and axons to survive long term. Axon loss can be halted by blocking calcium influx or calpain, even with delayed initiation. Our data identify an inherent self-preservation process in contused axons and a window of opportunity for rescuing connectivity after nontransecting SCI.


Asunto(s)
Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Médula Espinal/ultraestructura , Animales , Axones/metabolismo , Axones/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Cationes Bivalentes , Femenino , Expresión Génica , Genes Reporteros , Transporte Iónico , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Imagen Molecular , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Factores de Tiempo
15.
Nat Commun ; 5: 4827, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25219969

RESUMEN

Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Bioensayo , Microtúbulos/ultraestructura , Imagen Molecular/métodos , Neuronas/ultraestructura , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Polaridad Celular , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Grabación en Video
16.
Nat Commun ; 5: 3699, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24832361

RESUMEN

Many neurons receive synapses in stereotypic proportions from converging but functionally distinct afferents. However, developmental mechanisms regulating synaptic convergence are not well understood. Here we describe a heterotypic mechanism by which one afferent controls synaptogenesis of another afferent, but not vice versa. Like other CNS circuits, zebrafish retinal H3 horizontal cells (HC) undergo an initial period of remodelling, establishing synapses with ultraviolet and blue cones while eliminating red and green cone contacts. As development progresses, the HCs selectively synapse with ultraviolet cones to generate a 5:1 ultraviolet-to-blue cone synapse ratio. Blue cone synaptogenesis increases in mutants lacking ultraviolet cones, and when transmitter release or visual stimulation of ultraviolet cones is perturbed. Connectivity is unaltered when blue cone transmission is suppressed. Moreover, there is no cell-autonomous regulation of cone synaptogenesis by neurotransmission. Thus, biased connectivity in this circuit is established by an unusual activity-dependent, unidirectional control of synaptogenesis exerted by the dominant input.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Sinapsis/fisiología , Pez Cebra , Animales , Plasticidad Neuronal , Retina/fisiología
17.
Nat Med ; 20(5): 555-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24747747

RESUMEN

Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain-dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.


Asunto(s)
Técnicas Biosensibles , Mitocondrias/fisiología , Neuronas/fisiología , Oxidación-Reducción , Animales , Axotomía , Calcio/metabolismo , Diagnóstico por Imagen , Expresión Génica , Humanos , Ratones , Mitocondrias/patología , Mitocondrias/ultraestructura , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(37): 15109-14, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980162

RESUMEN

Proper functioning of sensory systems requires the generation of appropriate numbers and proportions of neuronal subtypes that encode distinct information. Perception of color relies on signals from multiple cone photoreceptor types. In cone-dominated retinas, each cone expresses a single opsin type with peak sensitivity to UV, long (L) (red), medium (M) (green), or short (S) (blue) wavelengths. The modes of cell division generating distinct cone types are unknown. We report here a mechanism whereby zebrafish cone photoreceptors of the same type are produced by symmetric division of dedicated precursors. Transgenic fish in which the thyroid hormone receptor ß2 (trß2) promoter drives fluorescent protein expression before L-cone precursors themselves are produced permitted tracking of their division in vivo. Every L cone in a local region resulted from the terminal division of an L-cone precursor, suggesting that such divisions contribute significantly to L-cone production. Analysis of the fate of isolated pairs of cones and time-lapse observations suggest that other cone types can also arise by symmetric terminal divisions. Such divisions of dedicated precursors may help to rapidly attain the final numbers and proportions of cone types (L > M, UV > S) in zebrafish larvae. Loss- and gain-of-function experiments show that L-opsin expression requires trß2 activity before cone differentiation. Ectopic expression of trß2 after cone differentiation produces cones with mixed opsins. Temporal differences in the onset of trß2 expression could explain why some species have mixed, and others have pure, cone types.


Asunto(s)
Opsinas de los Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Diferenciación Celular , División Celular , Linaje de la Célula , Opsinas de los Conos/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Células Fotorreceptoras Retinianas Conos/clasificación , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Madre/citología , Células Madre/metabolismo , Receptores beta de Hormona Tiroidea/antagonistas & inhibidores , Receptores beta de Hormona Tiroidea/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Cold Spring Harb Protoc ; 2013(1)2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23282639

RESUMEN

Neuronal circuits of the vertebrate retina are organized into stereotyped laminae. This orderly arrangement makes the retina an ideal model system for imaging studies aimed at understanding how circuits assemble during development. In particular, live-cell imaging techniques are readily applied to the developing retina to monitor dynamic changes over time in cell structure and connectivity. Such imaging studies have collectively revealed novel strategies by which retinal neurons contact their presynaptic and postsynaptic partners to establish synaptic connections. We describe here the procedures developed in our laboratory for confocal and multiphoton live-cell imaging of the developing retina using in vitro retinal explants. Retinas can be removed from the eye and kept in culture conditions for several days with limited disruption to the retinal circuit. The explanted retina is amenable to a variety of labeling techniques and provides a large, flat, unobstructed surface that is ideal for optical imaging experiments. This protocol describes procedures for mounting and imaging the isolated mouse retina. The same general procedure, with only minor modification (composition of culture medium), has been used to image retinas from a variety of vertebrates (e.g., chick, ferret, and rabbit).


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Neuronas/fisiología , Retina/embriología , Animales , Fluorescencia , Ratones , Técnicas de Cultivo de Órganos , Retina/fisiología , Coloración y Etiquetado/métodos
20.
Cold Spring Harb Protoc ; 2013(1)2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23282640

RESUMEN

Neuronal circuits of the vertebrate retina are organized into stereotyped laminae. This orderly arrangement makes the retina an ideal model system for imaging studies aimed at understanding how circuits assemble during development. In particular, live-cell imaging techniques are readily applied to the developing retina to monitor dynamic changes over time in cell structure and connectivity. Such imaging studies have collectively revealed novel strategies by which retinal neurons contact their presynaptic and postsynaptic partners to establish synaptic connections. We describe here the procedures developed in our laboratory for confocal and multiphoton live-cell imaging of the developing retina using in vivo preparations. Zebrafish larvae are an ideal specimen for in vivo imaging experiments as they can be made to remain transparent throughout development. Isolated retinal cells can be readily labeled by DNA injection into the one-cell staged embryo, or via transplantation of fluorescently labeled cells from stable transgenics.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Neuronas/fisiología , Retina/embriología , Animales , Fluorescencia , Retina/fisiología , Coloración y Etiquetado/métodos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA