Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nanoscale ; 14(22): 8200-8201, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640163

RESUMEN

Correction for 'Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity' by Chang Lu et al., Nanoscale, 2020, 12, 2987-2991, https://doi.org/10.1039/C9NR07722G.

2.
Toxicol Rep ; 8: 646-656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868951

RESUMEN

Humans are frequently exposed to Quaternary Ammonium Compounds (QACs). QACs are ubiquitously used in medical settings, restaurants, and homes as cleaners and disinfectants. Despite their prevalence, nothing is known about the health effects associated with chronic low-level exposure. Chronic QAC toxicity, only recently identified in mice, resulted in developmental, reproductive, and immune dysfunction. Cell based studies indicate increased inflammation, decreased mitochondrial function, and disruption of cholesterol synthesis. If these findings translate to human toxicity, multiple physiological processes could be affected. This study tested whether QAC concentrations could be detected in the blood of 43 human volunteers, and whether QAC concentrations influenced markers of inflammation, mitochondrial function, and cholesterol synthesis. QAC concentrations were detected in 80 % of study participants. Blood QACs were associated with increase in inflammatory cytokines, decreased mitochondrial function, and disruption of cholesterol homeostasis in a dose dependent manner. This is the first study to measure QACs in human blood, and also the first to demonstrate statistically significant relationships between blood QAC and meaningful health related biomarkers. Additionally, the results are timely in light of the increased QAC disinfectant exposure occurring due to the SARS-CoV-2 pandemic. MAIN FINDINGS: This study found that 80 % of study participants contained QACs in their blood; and that markers of inflammation, mitochondrial function, and sterol homeostasis varied with blood QAC concentration.

3.
ACS Nano ; 14(5): 5161-5169, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32401004

RESUMEN

The concept of quantum-dot-in-perovskite solids pioneered by Ning and co-workers introduces a useful class of solution-processed type I heterostructures for optoelectronics applications. Concurrent searches for solution-processable detectors of ionizing radiation have focused on lead-halide perovskites. As described in this issue of ACS Nano, Cao et al. examined CsPbBr3 nanocrystals imbedded in Cs4PbBr6 as a wider gap host and determined its performance and possibilities as a scintillator for X-ray imaging. In this Perspective, we describe issues and research opportunities on ionizing radiation imaging and spectroscopy based on the CsPbBr3@Cs4PbBr6 composite and other perovskite-dot-in-host combinations in which the dot may be of lower dimensionality than 3, and we explore ionizing radiation detectors using halide perovskites.

4.
Nanoscale ; 12(5): 2987-2991, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31995081

RESUMEN

A synthetic method for uniform and pure Cs3Sb2Br9 NCs has been developed. Cs3Sb2Br9 NCs exhibit a 10-fold increase in activity for the photocatalytic CO2 reduction reaction compared to CsPbBr3 NCs, achieving 510 µmol CO g-1 cat. after 4 h. Density functional theory shows that Cs3Sb2Br9 surfaces sufficiently expose Sb to allow reactivity, as opposed to the unreactive CsPbBr3 surface.

5.
Adv Mater ; 29(43)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29024076

RESUMEN

Solution-grown films of CsPbBr3 nanocrystals imbedded in Cs4 PbBr6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr3 in melt-grown CsBr host crystals and CsPbBr3 evaporated films.

6.
J Immunol ; 196(11): 4793-804, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27183622

RESUMEN

Checkpoint blockade-based immunotherapies are effective in cancers with high numbers of nonsynonymous mutations. In contrast, current paradigms suggest that such approaches will be ineffective in cancers with few nonsynonymous mutations. To examine this issue, we made use of a murine model of BCR-ABL(+) B-lineage acute lymphoblastic leukemia. Using a principal component analysis, we found that robust MHC class II expression, coupled with appropriate costimulation, correlated with lower leukemic burden. We next assessed whether checkpoint blockade or therapeutic vaccination could improve survival in mice with pre-established leukemia. Consistent with the low mutation load in our leukemia model, we found that checkpoint blockade alone had only modest effects on survival. In contrast, robust heterologous vaccination with a peptide derived from the BCR-ABL fusion (BAp), a key driver mutation, generated a small population of mice that survived long-term. Checkpoint blockade strongly synergized with heterologous vaccination to enhance overall survival in mice with leukemia. Enhanced survival did not correlate with numbers of BAp:I-A(b)-specific T cells, but rather with increased expression of IL-10, IL-17, and granzyme B and decreased expression of programmed death 1 on these cells. Our findings demonstrate that vaccination to key driver mutations cooperates with checkpoint blockade and allows for immune control of cancers with low nonsynonymous mutation loads.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Vacunación , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Cancer Cell ; 28(3): 343-56, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26321221

RESUMEN

Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggressive lymphoid leukemia. Ikzf1 alterations result in acquisition of stem cell-like features, including self-renewal and increased bone marrow stromal adhesion. Retinoid receptor agonists reversed this phenotype, partly by inducing expression of IKZF1, resulting in abrogation of adhesion and self-renewal, cell cycle arrest, and attenuation of proliferation without direct cytotoxicity. Retinoids potentiated the activity of dasatinib in mouse and human BCR-ABL1 ALL, providing an additional therapeutic option in IKZF1-mutated ALL.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Factor de Transcripción Ikaros/genética , Mutación/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Retinoides/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Ácido Retinoico/metabolismo
8.
J Immunol ; 195(8): 4028-37, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26378075

RESUMEN

BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-ß1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells.


Asunto(s)
Presentación de Antígeno , Neoplasias Experimentales/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Linfocitos T Reguladores/inmunología , Animales , Reacciones Cruzadas , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/inmunología , Ratones , Ratones Noqueados , Neoplasias Experimentales/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología
9.
PLoS One ; 10(8): e0135134, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26252865

RESUMEN

Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia.


Asunto(s)
Antineoplásicos/administración & dosificación , Dexametasona/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Niño , Preescolar , Corticosterona/administración & dosificación , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Esquema de Medicación , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Osteonecrosis/prevención & control , Factores de Tiempo
10.
Genes Dev ; 29(5): 483-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25737277

RESUMEN

We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many "context-specific" regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a "lineage-specific" cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Leucemia/genética , Linaje de la Célula , Proliferación Celular/genética , Genoma Humano/genética , Humanos , Leucemia/fisiopatología , Mutación/genética , ARN Interferente Pequeño/genética , Proteínas Represoras
12.
Cancer Res ; 74(14): 3753-63, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028366

RESUMEN

Neuroblastoma is a pediatric cancer with significant genomic and biologic heterogeneity. p16 and ARF, two important tumor-suppressor genes on chromosome 9p21, are inactivated commonly in most cancers, but paradoxically overexpressed in neuroblastoma. Here, we report that exon γ in p16 is also part of an undescribed long noncoding RNA (lncRNA) that we have termed CAI2 (CDKN2A/ARF Intron 2 lncRNA). CAI2 is a single-exon gene with a poly A signal located in but independent of the p16/ARF exon 3. CAI2 is expressed at very low levels in normal tissue, but is highly expressed in most tumor cell lines with an intact 9p21 locus. Concordant expression of CAI2 with p16 and ARF in normal tissue along with the ability of CAI2 to induce p16 expression suggested that CAI2 may regulate p16 and/or ARF. In neuroblastoma cells transformed by serial passage in vitro, leading to more rapid proliferation, CAI2, p16, and ARF expression all increased dramatically. A similar relationship was also observed in primary neuroblastomas where CAI2 expression was significantly higher in advanced-stage neuroblastoma, independently of MYCN amplification. Consistent with its association with high-risk disease, CAI2 expression was also significantly associated with poor clinical outcomes, although this effect was reduced when adjusted for MYCN amplification. Taken together, our findings suggested that CAI2 contributes to the paradoxical overexpression of p16 in neuroblastoma, where CAI2 may offer a useful biomarker of high-risk disease.


Asunto(s)
Cromosomas Humanos Par 9 , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Neuroblastoma/patología , ARN Largo no Codificante/genética , Factores de Ribosilacion-ADP/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Niño , Preescolar , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Estudios de Seguimiento , Expresión Génica , Orden Génico , Humanos , Lactante , Recién Nacido , Estadificación de Neoplasias , Neuroblastoma/mortalidad , Pronóstico , ARN Mensajero/genética
13.
Pharmacogenet Genomics ; 24(5): 263-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24710003

RESUMEN

BACKGROUND: Thiopurines are used for many cancers, including acute lymphoblastic leukemia (ALL). Patients with an inherited host defect in thiopurine methyltransferase (TPMT) are at high risk for life-threatening toxicity if treated with conventional dosages, but the impact on antileukemic efficacy is less clear. MATERIALS AND METHODS: We treated thiopurine-sensitive BCR-ABL+Arf-null Tpmt+/+ ALL in Tpmt+/+, +/-, or -/- recipient mice to test the impact of the host polymorphism on antileukemic efficacy. RESULTS: Median survival was similar in untreated mice of different Tpmt genotypes (16-18 days). However, in mice treated with low-dose mercaptopurine (such as tolerated by TPMT-/- patients), the difference in 30-day leukemia-free survival by Tpmt genotype was profound: 5% (±9%) for Tpmt+/+ mice, 47% (±26%) for Tpmt+/- mice, and 85% (±14%) for Tpmt-/- mice (P=5×10), indicating a substantial impact of host Tpmt status on thiopurine effectiveness. Among Tpmt+/+ recipient mice, leukemia-free survival improved with higher doses of mercaptopurine (similar to doses tolerated by wild-type patients) compared with lower doses, and at higher doses was comparable (P=0.6) to the survival of Tpmt-/- mice treated with the lower dose. CONCLUSIONS: These findings support the notion that germline polymorphisms in Tpmt affect not only host tissue toxicity but also antitumor effectiveness.


Asunto(s)
Mercaptopurina/toxicidad , Metiltransferasas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Proteínas de Fusión bcr-abl/genética , Células Germinativas , Humanos , Masculino , Mercaptopurina/administración & dosificación , Ratones , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
14.
PLoS One ; 9(2): e88219, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505435

RESUMEN

The INK4A locus codes for two independent tumor suppressors, p14ARF and p16/CDKN2A, and is frequently mutated in many cancers. Here we report a novel deletion/substitution from CC to T in the shared exon 2 of p14ARF/p16 in a melanoma cell line. This mutation aligns the reading frames of p14ARF and p16 mid-transcript, producing one protein which is half p14ARF and half p16, chimera ARF (chARF), and another which is half p16 and half non-p14ARF/non-p16 amino acids, p16-Alternate Carboxyl Terminal (p16-ACT). In an effort to understand the cellular impact of this novel mutation and others like it, we expressed the two protein products in a tumor cell line and analyzed common p14ARF and p16 pathways, including the p53/p21 and CDK4/cyclin D1 pathways, as well as the influence of the two proteins on growth and the cell cycle. We report that chARF mimicked wild-type p14ARF by inducing the p53/p21 pathway, inhibiting cell growth through G2/M arrest and maintaining a certain percentage of cells in G1 during nocodazole-induced G2 arrest. chARF also demonstrated p16 activity by binding CDK4. However, rather than preventing cyclin D1 from binding CDK4, chARF stabilized this interaction through p21 which bound CDK4. p16-ACT had no p16-related function as it was unable to inhibit cyclin D1/CDK4 complex formation and was unable to arrest the cell cycle, though it did inhibit colony formation. We conclude that these novel chimeric proteins, which are very similar to predicted p16/p14ARF chimeric proteins found in other primary cancers, result in maintained p14ARF-p53-p21 signaling while p16-dependent CDK4 inhibition is lost.


Asunto(s)
Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Melanoma/genética , Proteínas Mutantes Quiméricas/genética , Proteína p14ARF Supresora de Tumor/genética , Secuencia de Bases , Ciclo Celular , Línea Celular Tumoral , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Exones , Humanos , Melanoma/metabolismo , Melanoma/patología , Proteínas Mutantes Quiméricas/metabolismo , Mutación , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
J Biomol Screen ; 19(1): 158-67, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23989453

RESUMEN

Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7-dependent BCR-ABL-KI-resistant phenotype, we screened a small-molecule library including Food and Drug Administration-approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI-resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI-resistant phenotype of human Ph+ ALL. This cotreatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inhibidores de Proteínas Quinasas/farmacología , Microambiente Tumoral/efectos de los fármacos , Animales , Citocinas/metabolismo , Descubrimiento de Drogas/métodos , Resistencia a Antineoplásicos/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fenotipo
16.
J Exp Clin Cancer Res ; 32: 57, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23958461

RESUMEN

Renal cell carcinoma (RCC), the most common malignancy of the kidney, is refractory to standard therapy and has an incidence that continues to rise. Screening of plant extracts in search of new agents to treat RCC resulted in the discovery of englerin A (EA), a natural product exhibiting potent selective cytotoxicity against renal cancer cells. Despite the establishment of synthetic routes to the synthesis of EA, very little is known about its mechanism of action. The results of the current study demonstrate for the first time that EA induces apoptosis in A498 renal cancer cells in addition to necrosis. The induction of apoptosis by EA required at least 24 h and was caspase independent. In addition, EA induced increased levels of autophagic vesicles in A498 cells which could be inhibited by nonessential amino acids (NEAA), known inhibitors of autophagy. Interestingly, inhibition of autophagy by NEAA did not diminish cell death suggesting that autophagy is not a cell death mechanism and likely represents a cell survival mechanism which ultimately fails. Apart from cell death, our results demonstrated that cells treated with EA accumulated in the G2 phase of the cell cycle indicating a block in G2/M transition. Moreover, our results determined that EA inhibited the activation of both AKT and ERK, kinases which are activated in cancer and implicated in unrestricted cell proliferation and induction of autophagy. The phosphorylation status of the cellular energy sensor, AMPK, appeared unaffected by EA. The high renal cancer selectivity of EA combined with its ability to induce multiple mechanisms of cell death while inhibiting pathways driving cell proliferation, suggest that EA is a highly unique agent with great potential as a therapeutic lead for the treatment of RCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Sesquiterpenos de Guayano/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Fosforilación
17.
Blood ; 122(9): 1587-98, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23881917

RESUMEN

The response of Philadelphia chromosome (Ph(+)) acute lymphoblastic leukemia (ALL) to treatment by BCR-ABL tyrosine kinase inhibitors (TKIs) has been disappointing, often resulting in short remissions typified by rapid outgrowth of drug-resistant clones. Therefore, new treatments are needed to improve outcomes for Ph(+) ALL patients. In a mouse model of Ph(+) B-lineage ALL, MCL-1 expression is dysregulated by the BCR-ABL oncofusion protein, and TKI treatment results in loss of MCL-1 expression prior to the induction of apoptosis, suggesting that MCL-1 may be an essential prosurvival molecule. To test this hypothesis, we developed a mouse model in which conditional allele(s) of Mcl-1 can be deleted either during leukemia transformation or later after the establishment of leukemia. We report that endogenous MCL-1's antiapoptotic activity promotes survival during BCR-ABL transformation and in established BCR-ABL(+) leukemia. This requirement for MCL-1 can be overcome by overexpression of other antiapoptotic molecules. We further demonstrate that strategies to inhibit MCL-1 expression potentiate the proapoptotic action of BCL-2 inhibitors in both mouse and human BCR-ABL(+) leukemia cell lines. Thus, strategies focused on antagonizing MCL-1 function and expression would be predicted to be effective therapeutic strategies.


Asunto(s)
Linaje de la Célula/genética , Proteínas de Fusión bcr-abl/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Apoptosis/genética , Apoptosis/fisiología , Linfocitos B/metabolismo , Linfocitos B/fisiología , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
18.
Clin Cancer Res ; 19(16): 4359-4370, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23794731

RESUMEN

PURPOSE: Several oral multikinase inhibitors are known to interact in vitro with the human ATP-binding cassette transporter ABCC4 (MRP4), but the in vivo relevance of this interaction remains poorly understood. We hypothesized that host ABCC4 activity may influence the pharmacokinetic profile of dasatinib and subsequently affect its antitumor properties. EXPERIMENTAL DESIGN: Transport of dasatinib was studied in cells transfected with human ABCC4 or the ortholog mouse transporter, Abcc4. Pharmacokinetic studies were done in wild-type and Abcc4-null mice. The influence of Abcc4 deficiency on dasatinib efficacy was evaluated in a model of Ph(+) acute lymphoblastic leukemia by injection of luciferase-positive, p185(BCR-ABL)-expressing Arf(-/-) pre-B cells. RESULTS: Dasatinib accumulation was significantly changed in cells overexpressing ABCC4 or Abcc4 compared with control cells (P < 0.001). Deficiency of Abcc4 in vivo was associated with a 1.75-fold decrease in systemic exposure to oral dasatinib, but had no influence on the pharmacokinetics of intravenous dasatinib. Abcc4 was found to be highly expressed in the stomach, and dasatinib efflux from isolated mouse stomachs ex vivo was impaired by Abcc4 deficiency (P < 0.01), without any detectable changes in gastric pH. Abcc4-null mice receiving dasatinib had an increase in leukemic burden, based on bioluminescence imaging, and decreased overall survival compared with wild-type mice (P = 0.048). CONCLUSIONS: This study suggests that Abcc4 in the stomach facilitates the oral absorption of dasatinib, and it possibly plays a similar role for other orally administered substrates, such as acetylsalicylic acid. This phenomenon also provides a mechanistic explanation for the malabsorption of certain drugs following gastric resection.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Pirimidinas/metabolismo , Tiazoles/metabolismo , Absorción , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Transporte Biológico , Dasatinib , Mucosa Gástrica/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/farmacocinética , Tiazoles/administración & dosificación , Tiazoles/farmacocinética
19.
Nature ; 486(7404): 537-40, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22722843

RESUMEN

Colorectal tumours that are wild type for KRAS are often sensitive to EGFR blockade, but almost always develop resistance within several months of initiating therapy. The mechanisms underlying this acquired resistance to anti-EGFR antibodies are largely unknown. This situation is in marked contrast to that of small-molecule targeted agents, such as inhibitors of ABL, EGFR, BRAF and MEK, in which mutations in the genes encoding the protein targets render the tumours resistant to the effects of the drugs. The simplest hypothesis to account for the development of resistance to EGFR blockade is that rare cells with KRAS mutations pre-exist at low levels in tumours with ostensibly wild-type KRAS genes. Although this hypothesis would seem readily testable, there is no evidence in pre-clinical models to support it, nor is there data from patients. To test this hypothesis, we determined whether mutant KRAS DNA could be detected in the circulation of 28 patients receiving monotherapy with panitumumab, a therapeutic anti-EGFR antibody. We found that 9 out of 24 (38%) patients whose tumours were initially KRAS wild type developed detectable mutations in KRAS in their sera, three of which developed multiple different KRAS mutations. The appearance of these mutations was very consistent, generally occurring between 5 and 6 months following treatment. Mathematical modelling indicated that the mutations were present in expanded subclones before the initiation of panitumumab treatment. These results suggest that the emergence of KRAS mutations is a mediator of acquired resistance to EGFR blockade and that these mutations can be detected in a non-invasive manner. They explain why solid tumours develop resistance to targeted therapies in a highly reproducible fashion.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Evolución Molecular , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , ADN de Neoplasias/sangre , Resistencia a Antineoplásicos/genética , Genes ras/genética , Humanos , Mutación/genética , Panitumumab , Proteínas Proto-Oncogénicas p21(ras) , Selección Genética/efectos de los fármacos , Factores de Tiempo
20.
Blood ; 117(13): 3585-95, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21263154

RESUMEN

The introduction of cultured p185(BCR-ABL)-expressing (p185+) Arf (-/-) pre-B cells into healthy syngeneic mice induces aggressive acute lymphoblastic leukemia (ALL) that genetically and phenotypically mimics the human disease. We adapted this high-throughput Philadelphia chromosome-positive (Ph(+)) ALL animal model for in vivo luminescent imaging to investigate disease progression, targeted therapeutic response, and ALL relapse in living mice. Mice bearing high leukemic burdens (simulating human Ph(+) ALL at diagnosis) entered remission on maximally intensive, twice-daily dasatinib therapy, but invariably relapsed with disseminated and/or central nervous system disease. Although relapse was frequently accompanied by the eventual appearance of leukemic clones harboring BCR-ABL kinase domain (KD) mutations that confer drug resistance, their clonal emergence required prolonged dasatinib exposure. KD P-loop mutations predominated in mice receiving less intensive therapy, whereas high-dose treatment selected for T315I "gatekeeper" mutations resistant to all 3 Food and Drug Administration-approved BCR-ABL kinase inhibitors. The addition of dexamethasone and/or L-asparaginase to reduced-intensity dasatinib therapy improved long-term survival of the majority of mice that received all 3 drugs. Although non-tumor-cell-autonomous mechanisms can prevent full eradication of dasatinib-refractory ALL in this clinically relevant model, the emergence of resistance to BCR-ABL kinase inhibitors can be effectively circumvented by the addition of "conventional" chemotherapeutic agents with alternate antileukemic mechanisms of action.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Mutagénesis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pirimidinas/uso terapéutico , Tiazoles/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Dasatinib , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense/efectos de los fármacos , Cromosoma Filadelfia/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Trasplante Isogénico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA