Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585724

RESUMEN

Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.

2.
Science ; 383(6681): 372-373, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271527

RESUMEN

Orthogonal replication enables rapid continuous biomolecular evolution in Escherichia coli.


Asunto(s)
Replicación del ADN , Evolución Molecular Dirigida , Escherichia coli , Escherichia coli/genética , Replicón
3.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014077

RESUMEN

When nature maintains or evolves a gene's function over millions of years at scale, it produces a diversity of homologous sequences whose patterns of conservation and change contain rich structural, functional, and historical information about the gene. However, natural gene diversity likely excludes vast regions of functional sequence space and includes phylogenetic and evolutionary eccentricities, limiting what information we can extract. We introduce an accessible experimental approach for compressing long-term gene evolution to laboratory timescales, allowing for the direct observation of extensive adaptation and divergence followed by inference of structural, functional, and environmental constraints for any selectable gene. To enable this approach, we developed a new orthogonal DNA replication (OrthoRep) system that durably hypermutates chosen genes at a rate of >10 -4 substitutions per base in vivo . When OrthoRep was used to evolve a conditionally essential maladapted enzyme, we obtained thousands of unique multi-mutation sequences with many pairs >60 amino acids apart (>15% divergence), revealing known and new factors influencing enzyme adaptation. The fitness of evolved sequences was not predictable by advanced machine learning models trained on natural variation. We suggest that OrthoRep supports the prospective and systematic discovery of constraints shaping gene evolution, uncovering of new regions in fitness landscapes, and general applications in biomolecular engineering.

4.
Nat Commun ; 13(1): 6822, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357387

RESUMEN

Advances in synthetic biology, bioengineering, and computation allow us to rapidly and reliably program cells with increasingly complex and useful functions. However, because the functions we engineer cells to perform are typically burdensome to cell growth, they can be rapidly lost due to the processes of mutation and natural selection. Here, we show that a strategy of terminal differentiation improves the evolutionary stability of burdensome functions in a general manner by realizing a reproductive and metabolic division of labor. To implement this strategy, we develop a genetic differentiation circuit in Escherichia coli using unidirectional integrase-recombination. With terminal differentiation, differentiated cells uniquely express burdensome functions driven by the orthogonal T7 RNA polymerase, but their capacity to proliferate is limited to prevent the propagation of advantageous loss-of-function mutations that inevitably occur. We demonstrate computationally and experimentally that terminal differentiation increases duration and yield of high-burden expression and that its evolutionary stability can be improved with strategic redundancy. Further, we show this strategy can even be applied to toxic functions. Overall, this study provides an effective, generalizable approach for protecting burdensome engineered functions from evolutionary degradation.


Asunto(s)
Escherichia coli , Integrasas , Escherichia coli/genética , Escherichia coli/metabolismo , Integrasas/genética , Integrasas/metabolismo , Regiones Promotoras Genéticas , Biología Sintética , Redes Reguladoras de Genes
5.
Sci Adv ; 6(33): eaba0353, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851161

RESUMEN

Major changes in the microbiome are associated with health and disease. Some microbiome states persist despite seemingly unfavorable conditions, such as the proliferation of aerobe-anaerobe communities in oxygen-exposed environments in wound infections or small intestinal bacterial overgrowth. Mechanisms underlying transitions into and persistence of these states remain unclear. Using two microbial taxa relevant to the human microbiome, we combine genome-scale mathematical modeling, bioreactor experiments, transcriptomics, and dynamical systems theory to show that multistability and hysteresis (MSH) is a mechanism describing the shift from an aerobe-dominated state to a resilient, paradoxically persistent aerobe-anaerobe state. We examine the impact of changing oxygen and nutrient regimes and identify changes in metabolism and gene expression that lead to MSH and associated multi-stable states. In such systems, conceptual causation-correlation connections break and MSH must be used for analysis. Using MSH to analyze microbiome dynamics will improve our conceptual understanding of stability of microbiome states and transitions between states.


Asunto(s)
Microbiota , Humanos , Nutrientes , Oxígeno
6.
Clin Cancer Res ; 25(13): 4117-4127, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30936125

RESUMEN

PURPOSE: In neurofibromatosis type 1 (NF1) and in highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), constitutively active RAS-GTP and increased MAPK signaling are important in tumorigenesis. Dual specificity phosphatases (DUSPs) are negative regulators of MAPK signaling that dephosphorylate p38, JNK, and ERK in different settings. Although often acting as tumor suppressors, DUSPs may also act as oncogenes, helping tumor cells adapt to high levels of MAPK signaling. We hypothesized that inhibiting DUSPs might be selectively toxic to cells from NF1-driven tumors. EXPERIMENTAL DESIGN: We examined DUSP gene and protein expression in neurofibroma and MPNSTs. We used small hairpin RNA (shRNA) to knock down DUSP1 and DUSP6 to evaluate cell growth, downstream MAPK signaling, and mechanisms of action. We evaluated the DUSP inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), in MPNST cell lines and in cell-line and patient-derived MPNST xenografts. RESULTS: DUSP1 and DUSP6 are expressed in NF1-deleted tumors. Knockdown of DUSP1 and DUSP6, alone or in combination, reduced MPNST cell growth and led to ERK and JNK hyperactivation increasing downstream TP53 and p-ATM. The DUSP inhibitor, BCI, diminished the survival of NF1-deleted Schwann cells and MPNST cell lines through activation of JNK. In vivo, treatment of an established cell-line xenograft or a novel patient-derived xenograft (PDX) of MPNSTs with BCI increased ERK and JNK activation, caused tumor necrosis and fibrosis, and reduced tumor volume in one model. CONCLUSIONS: Targeting DUSP1 and DUSP6 genetically or with BCI effectively inhibits MPNST cell growth and promotes cell death, in vitro and in xenograft models. The data support further investigation of DUSP inhibition in MPNSTs.


Asunto(s)
Antineoplásicos/farmacología , Fosfatasa 1 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Neurofibromatosis 1/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Res ; 79(5): 905-917, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674530

RESUMEN

Medulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using Sleeping Beauty (SB) transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified SB-driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with FOXR2 activation. This represents the first genetically induced mouse model of CNS-PNET and a rare model of group 3 and 4 medulloblastoma. We identified several putative proto-oncogenes including Arhgap36, Megf10, and Foxr2. Genetic manipulation of these genes demonstrated a robust impact on tumorigenesis in vitro and in vivo. We also determined that FOXR2 interacts with N-MYC, increases C-MYC protein stability, and activates FAK/SRC signaling. Altogether, our study identified several promising therapeutic targets in medulloblastoma and CNS-PNET. SIGNIFICANCE: A transposon-induced mouse model identifies several novel genetic drivers and potential therapeutic targets in medulloblastoma and CNS-PNET.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Tumores Neuroectodérmicos Primitivos/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Elementos Transponibles de ADN/genética , Femenino , Factores de Transcripción Forkhead/genética , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Mutagénesis Insercional/métodos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...