Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 462: 65-73, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30165064

RESUMEN

Immortalized T cells such as T cell hybridomas, transfectomas, and transductants are useful tools to study tri-molecular complexes consisting of peptide, MHC, and T cell receptor (TCR) molecules. These cells have been utilized for antigen discovery studies for decades due to simplicity and rapidness of growing cells. However, responsiveness to antigen stimulation is typically less sensitive compared to primary T cells, resulting in occasional false negative outcomes especially for TCRs having low affinity to a peptide-MHC complex (pMHC). To overcome this obstacle, we genetically engineered T cell hybridomas to express additional CD3 molecules as well as CD4 with two amino acid substitutions that increase affinity to MHC class II molecules. The manipulated T cell hybridomas that were further transduced with retroviral vectors encoding TCRs of interest responded to cognate antigens more robustly than non-manipulated cells without evoking non-antigen specific reactivity. Of importance, the manipulation with CD3 and mutated human CD4 expression was effective in increasing responsiveness of T cell hybridomas to a wide variety of TCR, peptide, and MHC combinations across class II genetic loci (i.e. HLA-DR, HLA-DQ, HLA-DP, and murine H2-IA) and species (i.e. both humans and mice), and thus will be useful to identify antigen specificity of T cells.


Asunto(s)
Antígenos/farmacología , Línea Celular Transformada/inmunología , Hibridomas/inmunología , Activación de Linfocitos/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Antígenos/inmunología , Complejo CD3/inmunología , Línea Celular Transformada/citología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Hibridomas/citología
2.
Mol Carcinog ; 55(11): 1761-1771, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26512949

RESUMEN

Prostate cancer (PC) is the second leading cause of cancer related deaths in US men. Androgen deprivation therapy (ADT) improves clinical outcome, but tumors often recur and progress to androgen independent prostate cancer (AIPC) which no longer responds to ADT. The progression to AIPC is due to genetic alterations that allow PC cancer cells to grow in the absence of androgen. Here we performed an insertional mutagenesis screen using a replication-incompetent lentiviral vector (LV) to identify the genes that promote AIPC in an orthotopic mouse model. Androgen sensitive PC cells, LNCaP, were mutagenized with LV and injected into the prostate of male mice. After tumor development, mice were castrated to select for cells that proliferate in the absence of androgen. Proviral integration sites and nearby dysregulated genes were identified in tumors developed in an androgen deficient environment. Using publically available datasets, the expression of these candidate androgen independence genes in human PC tissues were analyzed. A total of 11 promising candidate AIPC genes were identified: GLYATL1, FLNA, OBSCN, STRA13, WHSC1, ARFGAP3, KDM2A, FAM83H, CLDN7, CNOT6, and B3GNT9. Seven out the 11 candidate genes; GLYATL1, OBSCN, STRA13, KDM2A, FAM83H, CNOT6, and B3GNT6, have not been previously implicated in PC. An in vitro clonogenic assay showed that knockdown of KDM2A, FAM83H, and GLYATL1 genes significantly inhibited the colony forming ability of LNCaP cells. Additionally, we showed that a combination of four genes, OBSCN, FAM83H, CLDN7, and ARFGAP3 could significantly predicted the recurrence risk in PC patients after prostatectomy (P = 5.3 × 10-5 ). © 2015 Wiley Periodicals, Inc.


Asunto(s)
Andrógenos/metabolismo , Genes Relacionados con las Neoplasias , Lentivirus/genética , Mutagénesis Insercional/métodos , Neoplasias de la Próstata/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Vectores Genéticos/farmacología , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias de la Próstata/metabolismo
3.
Biol Sex Differ ; 4(1): 10, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23651648

RESUMEN

BACKGROUND: Women and men have diverse responses to many infectious diseases. These differences are amplified following menopause. However, despite extensive information regarding the effects of sex hormones on immune cells, our knowledge is limited regarding the effects of sex and gender on the function of the mucosal immune system. Sex differences also manifest in the prevalence of gut associated inflammatory and autoimmune disorders, including Crohn's disease, ulcerative colitis and Celiac disease. It is thus hypothesized that a baseline sex-associated difference in immune activation may predispose women to inflammation-associated disease. METHODS: Peripheral blood samples and small intestinal biopsies were obtained from 34 healthy men and women. Immunophenotypic analysis of isolated lymphocytes was performed by flow cytometry. Oligonucleotide analysis was used to study the transcriptional profile in the gut mucosal microenvironment while real-time PCR analysis was utilized to identify differential gene expression in isolated CD4+ T cells. Transcriptional analysis was confirmed by protein expression levels for genes of interest using fluorescent immunohistochemistry. Data was analyzed using the GraphPad software package. RESULTS: Women had higher levels of immune activation and inflammation-associated gene expression in gut mucosal samples. CD4+ and CD8+ T cells had a significantly higher level of immune activation-associated phenotype in peripheral blood as well as in gut associated lymphoid tissue along with higher levels of proliferating T cells. CD4+ T cells that showed upregulation of IL1ß as well as the TH17 pathway-associated genes contributed a large part of the inflammatory profile. CONCLUSION: In this study, we demonstrated an upregulation in gene expression related to immune function in the gut microenvironment of women compared to men, in the absence of disease or pathology. Upon closer investigation, CD4+ T cell activation levels were higher in the LPLs in women than in men. Sex differences in the mucosal immune system may predispose women to inflammation-associated diseases that are exacerbated following menopause. Our study highlights the need for more detailed analysis of the effects of sex differences in immune responses at mucosal effector sites.

4.
News Physiol Sci ; 15: 120-124, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11390893

RESUMEN

Pathogenetic mechanisms of retinal degeneration include cell loss by apoptosis. This gene-regulated mode of single-cell death occurs in a number of widespread human diseases such as neurodegeneration. The knowledge of genes and signaling in retinal apoptosis is expanding and opens up therapeutic strategies to ameliorate blinding retinal diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...