Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Cardiovasc Imaging ; 17(6): e016274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889214

RESUMEN

BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid atherosclerosis. METHODS: The machine learning based model was trained using degree of stenosis and the volumes of 13 computed tomography angiography derived intracarotid plaque subcomponents (eg, lipid, intraplaque hemorrhage, calcium) to identify plaques associated with cerebrovascular events. The model was internally validated through repeated 10-fold cross-validation and tested on a dedicated testing cohort according to discrimination and calibration. RESULTS: This retrospective, single-center study evaluated computed tomography angiography scans of 268 patients with both symptomatic and asymptomatic carotid atherosclerosis (163 for the derivation set and 106 for the testing set) performed between March 2013 and October 2019. The area-under-receiver-operating characteristics curve by machine learning on the testing cohort (0.89) was significantly higher than the areas under the curve of traditional logit analysis based on the degree of stenosis (0.51, P<0.001), presence of intraplaque hemorrhage (0.69, P<0.001), and plaque composition (0.78, P<0.001), respectively. Comparable performance was obtained on internal validation. The identified plaque components and associated cutoff values that were significantly associated with a higher likelihood of symptomatic status after adjustment were the ratio of intraplaque hemorrhage to lipid volume (≥50%, 38.5 [10.1-205.1]; odds ratio, 95% CI) and percentage of intraplaque hemorrhage volume (≥10%, 18.5 [5.7-69.4]; odds ratio, 95% CI). CONCLUSIONS: This study presented an interpretable machine learning model that accurately identifies symptomatic carotid plaques using computed tomography angiography derived plaque composition features, aiding clinical decision-making.


Asunto(s)
Enfermedades de las Arterias Carótidas , Angiografía por Tomografía Computarizada , Aprendizaje Automático , Placa Aterosclerótica , Humanos , Angiografía por Tomografía Computarizada/métodos , Masculino , Femenino , Estudios Retrospectivos , Placa Aterosclerótica/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/complicaciones , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/complicaciones , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Arterias Carótidas/diagnóstico por imagen , Índice de Severidad de la Enfermedad
2.
Brain Commun ; 6(2): fcae126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665963

RESUMEN

We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA