Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 22(11): 2155-2164, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35521688

RESUMEN

Current quantification methods of Escherichia coli (E. coli) contamination in water samples involve long incubation, laboratory equipment and facilities, or complex processes that require specialized training for accurate operation and interpretation. To address these limitations, we have developed a microfluidic device and portable instrument prototypes capable of performing a rapid and highly sensitive bacteriophage-based assay to detect E. coli cells with detection limit comparable to traditional methods in a fraction of the time. The microfluidic device combines membrane filtration and selective enrichment using T7-NanoLuc-CBM, a genetically engineered bacteriophage, to identify 4.1 E. coli CFU in 100 mL of drinking water within 5.5 hours. The microfluidic device was designed and tested to process up to 100 mL of real-world drinking water samples with turbidities below 10 NTU. Prototypes of custom instrumentation, compatible with our valveless microfluidic device and capable of performing all of the assay's units of operation with minimal user intervention, demonstrated similar assay performance to that obtained on the benchtop assay. This research is the first step towards a faster, portable, and semi-automated, phage-based microfluidic platform for improved in-field water quality monitoring in low-resource settings.


Asunto(s)
Bacteriófagos , Agua Potable , Escherichia coli , Dispositivos Laboratorio en un Chip , Luciferasas
2.
Nat Biomed Eng ; 6(7): 819-829, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35534574

RESUMEN

Immune-checkpoint inhibitors have shown modest efficacy against immunologically 'cold' tumours. Interleukin-12 (IL-12)-a cytokine that promotes the recruitment of immune cells into tumours as well as immune cell activation, also in cold tumours-can cause severe immune-related adverse events in patients. Here, by exploiting the preferential overexpression of proteases in tumours, we show that fusing a domain of the IL-12 receptor to IL-12 via a linker cleavable by tumour-associated proteases largely restricts the pro-inflammatory effects of IL-12 to tumour sites. In mouse models of subcutaneous adenocarcinoma and orthotopic melanoma, masked IL-12 delivered intravenously did not cause systemic IL-12 signalling and eliminated systemic immune-related adverse events, led to potent therapeutic effects via the remodelling of the immune-suppressive microenvironment, and rendered cold tumours responsive to immune-checkpoint inhibition. We also show that masked IL-12 is activated in tumour lysates from patients. Protease-sensitive masking of potent yet toxic cytokines may facilitate their clinical translation.


Asunto(s)
Interleucina-12 , Melanoma , Animales , Citocinas , Inmunoterapia , Interleucina-12/farmacología , Ratones , Péptido Hidrolasas , Microambiente Tumoral
3.
Anal Bioanal Chem ; 414(8): 2607-2618, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091761

RESUMEN

The lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.


Asunto(s)
COVID-19/diagnóstico , Inmunoensayo/instrumentación , Malaria/diagnóstico , Pruebas en el Punto de Atención , Tuberculosis/diagnóstico , Prueba Serológica para COVID-19/economía , Prueba Serológica para COVID-19/instrumentación , Diseño de Equipo , Humanos , Inmunoensayo/economía , Mycobacterium tuberculosis/aislamiento & purificación , Plasmodium/aislamiento & purificación , Pruebas en el Punto de Atención/economía , Reproducibilidad de los Resultados , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Factores de Tiempo
4.
PLoS One ; 16(11): e0258819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34758052

RESUMEN

Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.


Asunto(s)
Antígenos Virales/inmunología , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , COVID-19/virología , Humanos , Límite de Detección , Sistemas de Atención de Punto , ARN Viral/inmunología , Sensibilidad y Especificidad
5.
Anal Chem ; 92(16): 11305-11309, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32605363

RESUMEN

The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/diagnóstico , Inmunoensayo/métodos , Nucleocápside/inmunología , Neumonía Viral/diagnóstico , Sistemas de Atención de Punto , Anticuerpos Antivirales/sangre , Antígenos/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Límite de Detección , Pandemias , Neumonía Viral/virología , SARS-CoV-2
6.
Nat Biomed Eng ; 4(5): 531-543, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284554

RESUMEN

Checkpoint-inhibitor (CPI) immunotherapy has achieved remarkable clinical success, yet its efficacy in 'immunologically cold' tumours has been modest. Interleukin-12 (IL-12) is a powerful cytokine that activates the innate and adaptive arms of the immune system; however, the administration of IL-12 has been associated with immune-related adverse events. Here we show that, after intravenous administration of a collagen-binding domain fused to IL-12 (CBD-IL-12) in mice bearing aggressive mouse tumours, CBD-IL-12 accumulates in the tumour stroma due to exposed collagen in the disordered tumour vasculature. In comparison with the administration of unmodified IL-12, CBD-IL-12 induced sustained intratumoural levels of interferon-γ, substantially reduced its systemic levels as well as organ damage and provided superior anticancer efficacy, eliciting complete regression of CPI-unresponsive breast tumours. Furthermore, CBD-IL-12 potently synergized with CPI to eradicate large established melanomas, induced antigen-specific immunological memory and controlled tumour growth in a genetically engineered mouse model of melanoma. CBD-IL-12 may potentiate CPI immunotherapy for immunologically cold tumours.


Asunto(s)
Colágeno/metabolismo , Inflamación/patología , Interleucina-12/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Inmunidad Innata/efectos de los fármacos , Interleucina-12/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Inducción de Remisión , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
Sensors (Basel) ; 20(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244369

RESUMEN

A sanitized drinking water supply is an unconditional requirement for public health and the overall prosperity of humanity. Potential microbial and chemical contaminants of drinking water have been identified by a joint effort between the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), who together establish guidelines that define, in part, that the presence of Escherichia coli (E. coli) in drinking water is an indication of inadequate sanitation and a significant health risk. As E. coli is a nearly ubiquitous resident of mammalian gastrointestinal tracts, no detectable counts in 100 mL of drinking water is the standard used worldwide as an indicator of sanitation. The currently accepted EPA method relies on filtration, followed by growth on selective media, and requires 24-48 h from sample to results. In response, we developed a rapid bacteriophage-based detection assay with detection limit capabilities comparable to traditional methods in less than a quarter of the time. We coupled membrane filtration with selective enrichment using genetically engineered bacteriophages to identify less than 20 colony forming units (CFU) E. coli in 100 mL drinking water within 5 h. The combination of membrane filtration with phage infection produced a novel assay that demonstrated a rapid, selective, and sensitive detection of an indicator organism in large volumes of drinking water as recommended by the leading world regulatory authorities.


Asunto(s)
Bacteriófagos/genética , Técnicas Biosensibles , Agua Potable/análisis , Escherichia coli/aislamiento & purificación , Medios de Cultivo , Agua Potable/microbiología , Escherichia coli/patogenicidad , Ingeniería Genética , Humanos , Jeringas , Microbiología del Agua/normas , Abastecimiento de Agua
8.
Sci Adv ; 5(12): eaay1357, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844672

RESUMEN

Although a clinical breakthrough for cancer treatment, it remains that a minority of patients respond to checkpoint inhibitor (CPI) immunotherapy. The composition of tumor-infiltrating immune cells has been identified as a key factor influencing CPI therapy success. Thus, enhancing tumor immune cell infiltration is a critical challenge. A lack of the chemokine CCL4 within the tumor microenvironment leads to the absence of CD103+ dendritic cells (DCs), a crucial cell population influencing CPI responsiveness. Here, we use a tumor stroma-targeting approach to deliver CCL4; by generating a fusion protein of CCL4 and the collagen-binding domain (CBD) of von Willebrand factor, we show that CBD fusion enhances CCL4 tumor localization. Intravenous CBD-CCL4 administration recruits CD103+ DCs and CD8+ T cells and improves the antitumor effect of CPI immunotherapy in multiple tumor models, including poor responders to CPI. Thus, CBD-CCL4 holds clinical translational potential by enhancing efficacy of CPI immunotherapy.


Asunto(s)
Antígenos CD/inmunología , Quimiocina CCL4/genética , Inmunoterapia , Cadenas alfa de Integrinas/inmunología , Melanoma Experimental/inmunología , Melanoma/inmunología , Animales , Antígenos CD/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Quimiocina CCL4/inmunología , Quimiocina CCL4/farmacología , Colágeno/genética , Colágeno/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Humanos , Cadenas alfa de Integrinas/genética , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/genética , Melanoma/terapia , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Unión Proteica/genética , Microambiente Tumoral/efectos de los fármacos , Factor de von Willebrand/genética
9.
Nanomedicine ; 19: 126-135, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048082

RESUMEN

PEGylation strategy has been widely used to enhance colloidal stability of polycation/DNA nanoparticles (NPs) for gene delivery. To investigate the effect of polyethylene glycol (PEG) terminal groups on the transfection properties of these NPs, we synthesized DNA NPs using PEG-g-linear polyethyleneimine (lPEI) with PEG terminal groups containing alkyl chains of various lengths with or without a hydroxyl terminal group. For both alkyl- and hydroxyalkyl-decorated NPs with PEG grafting densities of 1.5, 3, or 5% on lPEI, the highest levels of transfection and uptake were consistently achieved at intermediate alkyl chain lengths of 3 to 6 carbons, where the transfection efficiency is significantly higher than that of nonfunctionalized lPEI/DNA NPs. Molecular dynamics simulations revealed that both alkyl- and hydroxyalkyl-decorated NPs with intermediate alkyl chain length exhibited more rapid engulfment than NPs with shorter or longer alkyl chains. This study identifies a new parameter for the engineering design of PEGylated DNA NPs.


Asunto(s)
ADN/metabolismo , Endocitosis , Nanopartículas/química , Polietilenglicoles/química , Transfección , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular
10.
Sci Transl Med ; 11(487)2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971453

RESUMEN

Cancer immunotherapy with immune checkpoint inhibitors (CPIs) and interleukin-2 (IL-2) has demonstrated clinical efficacy but is frequently accompanied with severe adverse events caused by excessive and systemic immune system activation. Here, we addressed this need by targeting both the CPI antibodies anti-cytotoxic T lymphocyte antigen 4 antibody (αCTLA4) + anti-programmed death ligand 1 antibody (αPD-L1) and the cytokine IL-2 to tumors via conjugation (for the antibodies) or recombinant fusion (for the cytokine) to a collagen-binding domain (CBD) derived from the blood protein von Willebrand factor (VWF) A3 domain, harnessing the exposure of tumor stroma collagen to blood components due to the leakiness of the tumor vasculature. We show that intravenously administered CBD protein accumulated mainly in tumors. CBD conjugation or fusion decreases the systemic toxicity of both αCTLA4 + αPD-L1 combination therapy and IL-2, for example, eliminating hepatotoxicity with the CPI molecules and ameliorating pulmonary edema with IL-2. Both CBD-CPI and CBD-IL-2 suppressed tumor growth compared to their unmodified forms in multiple murine cancer models, and both CBD-CPI and CBD-IL-2 increased tumor-infiltrating CD8+ T cells. In an orthotopic breast cancer model, combination treatment with CPI and IL-2 eradicated tumors in 9 of 13 animals with the CBD-modified drugs, whereas it did so in only 1 of 13 animals with the unmodified drugs. Thus, the A3 domain of VWF can be used to improve safety and efficacy of systemically administered tumor drugs with high translational promise.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Colágeno/metabolismo , Citocinas/inmunología , Inmunoterapia , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Inmunidad , Inyecciones Intravenosas , Interleucina-2/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Dominios Proteicos , Resultado del Tratamiento
11.
Nanotechnology ; 28(20): 204002, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28266928

RESUMEN

Efficient delivery of short interfering RNA (siRNA) remains one of the primary challenges of RNA interference therapy. Polyethylene glycol (PEG)ylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mice livers following intravenous administration.


Asunto(s)
Micelas , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Solventes/química , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polietilenglicoles/química , Polietileneimina/química
12.
Small ; 12(45): 6214-6222, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717227

RESUMEN

Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles.


Asunto(s)
ADN/química , Nanopartículas/química , Plásmidos/química , Poliaminas/química , Técnicas de Transferencia de Gen , Nanotecnología , Polielectrolitos , Polietileneimina/química
13.
ACS Biomater Sci Eng ; 2(4): 567-578, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27088129

RESUMEN

Nanoparticle-mediated gene delivery is a promising alternative to viral methods; however, its use in vivo, particularly following systemic injection, has suffered from poor delivery efficiency. Although PEGylation of nanoparticles has been successfully demonstrated as a strategy to enhance colloidal stability, its success in improving delivery efficiency has been limited, largely due to reduced cell binding and uptake, leading to poor transfection efficiency. Here we identified an optimized PEGylation scheme for DNA micellar nanoparticles that delivers balanced colloidal stability and transfection activity. Using linear polyethylenimine (lPEI)-g-PEG as a carrier, we characterized the effect of graft length and density of polyethylene glycol (PEG) on nanoparticle assembly, micelle stability, and gene delivery efficiency. Through variation of PEG grafting degree, lPEI with short PEG grafts (molecular weight, MW 500-700 Da) generated micellar nanoparticles with various shapes including spherical, rodlike, and wormlike nanoparticles. DNA micellar nanoparticles prepared with short PEG grafts showed comparable colloidal stability in salt and serum-containing media to those prepared with longer PEG grafts (MW 2 kDa). Corresponding to this trend, nanoparticles prepared with short PEG grafts displayed significantly higher in vitro transfection efficiency compared to those with longer PEG grafts. More importantly, short PEG grafts permitted marked increase in transfection efficiency following ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing mice. This study identifies that lPEI-g-PEG with short PEG grafts (MW 500-700 Da) is the most effective to ensure shape control and deliver high colloidal stability, transfection activity, and ligand effect for DNA nanoparticles in vitro and in vivo following intravenous administration.

14.
J Control Release ; 219: 536-547, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26450667

RESUMEN

As nanoparticle (NP)-mediated drug delivery research continues to expand, understanding parameters that govern NP interactions with the biological environment becomes paramount. The principles identified from the study of these parameters can be used to engineer new NPs, impart unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations. One key design parameter is NP size. New methods have been developed to produce NPs with increased control of NP size between 10 and 200nm, a size range most relevant to physical and biochemical targeting through both intravascular and site-specific deliveries. Three notable techniques best suited for generating polymeric NPs with narrow size distributions are highlighted in this review: self-assembly, microfluidics-based preparation, and flash nanoprecipitation. Furthermore, the effect of NP size on the biological fate and transport properties at the molecular scale (protein-NP interactions) and the tissue and systemic scale (convective and diffusive transport of NPs) are analyzed here. These analyses underscore the importance of NP size control in considering clinical translation and assessment of therapeutic outcomes of NP delivery vehicles.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polímeros/química , Animales , Humanos , Tamaño de la Partícula , Distribución Tisular
15.
Biomater Sci ; 3(7): 894-907, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26146550

RESUMEN

Nanoparticle-mediated delivery of therapeutics holds great potential for the diagnosis and treatment of a wide range of diseases. Significant advances have been made in the design of new polymeric nanoparticle carriers through modulation of their physical and chemical structures and biophysical properties. Nanoparticle shape has been increasingly proposed as an important attribute dictating their transport properties in biological milieu. In this review, we highlight three major methods for preparing polymeric nanoparticles that allow for exquisite control of particle shape. Special attention is given to various approaches to controlling nanoparticle shape by tuning copolymer structural parameters and assembly conditions. This review also provides comparisons of these methods in terms of their unique capabilities, materials choices, and specific delivery cargos, and summarizes the biological effects of nanoparticle shape on transport properties at the tissue and cellular levels.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Diseño de Fármacos , Humanos , Nanopartículas/química
16.
ACS Biomater Sci Eng ; 1(6): 448-455, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29399627

RESUMEN

Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain understanding of their shape-dependent transfection properties. Whereas earlier methods achieved shape tuning through the use of block copolymers and variation of solvent polarity, here we demonstrate through a combined experimental and computational approach that the same degree of shape control can be achieved through the use of graft copolymers that are easier to synthesize and provide a wider range of parameters for shape control. Moreover, the approach presented here does not require the use of organic solvents. The simulation work provides insight into the mechanism governing the shape variation as well as an effective model to guide further design of non-viral gene-delivery vectors. Our experimental findings offer important opportunities for the facile and large-scale synthesis of biocompatible gene-delivery vectors with well-controlled shape and tunable transfection properties. The in vitro study shows that both micelle shape and transfection efficiency are strongly correlated with the key structural parameters of the graft copolymer carriers.

17.
J Mater Chem B ; 2(46): 8106-8109, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25530853

RESUMEN

PEGylated polycation/DNA micellar nanoparticles have been developed that can undergo shape transformation upon cleavage of the PEG grafts in response to an environmental cue. As a proof-of-principle, DNA nanoparticles with higher PEG grafting density adopting long, worm- and rod-like morphologies, transition to more condensed nanoparticles with spherical and short-rod morphologies upon cleavage of a fraction of the PEG grafts from the copolymer. This shape transformation leads to increased surface charges, correlating with improved transfection efficiency.

18.
Annu Rev Biomed Eng ; 16: 347-70, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24905873

RESUMEN

Inhibiting specific gene expression by short interfering RNA (siRNA) offers a new therapeutic strategy to tackle many diseases, including cancer, metabolic disorders, and viral infections, at the molecular level. The macromolecular and polar nature of siRNA hinders its cellular access to exert its effect. Nanoparticulate delivery systems can promote efficient intracellular delivery. Despite showing promise in many preclinical studies and potential in some clinical trials, siRNA has poor delivery efficiency, which continues to demand innovations, from carrier design to formulation, in order to overcome transport barriers. Previous findings for optimal plasmid DNA delivery cannot be generalized to siRNA delivery owing to significant discrepancy in size and subtle differences in chain flexibility between the two types of nucleic acids. In this review, we highlight the recent advances in improving the stability of siRNA nanoparticles, understanding their intracellular trafficking and release mechanisms, and applying judiciously the promising formulations to disease models.


Asunto(s)
Nanomedicina/métodos , Nanopartículas/química , Nanotecnología/métodos , ARN Interferente Pequeño/metabolismo , Animales , Ensayos Clínicos como Asunto , ADN/metabolismo , Sistemas de Liberación de Medicamentos , Endosomas/metabolismo , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Hígado/metabolismo , Ácidos Nucleicos/metabolismo , Plásmidos/metabolismo , Polímeros/química , Interferencia de ARN , ARN Mensajero/metabolismo
19.
Adv Mater ; 25(2): 227-32, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23055399

RESUMEN

DNA-containing micellar nanoparticles with distinctly different and highly uniform morphologies are prepared via condensation of plasmid DNA with a block copolymer of polyethylene glycol and a polycation in solvents of different polarity. Molecular dynamics simulations explain the underlying mechanism.


Asunto(s)
ADN/química , Nanopartículas/química , Plásmidos/química , Polímeros/química , Amidas/química , Dimetilformamida/química , Micelas , Ácidos Fosfóricos/química , Polietilenglicoles/química , Agua/química
20.
Methods Mol Biol ; 948: 275-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23070777

RESUMEN

Retrograde intrabiliary infusion (RII) has recently been characterized as a safe and effective administration route for liver-targeted gene delivery. Efficient transgene expression in the liver has been achieved by infusing a variety of gene vectors including adenovirus, retrovirus, lipoplexes, polyplexes, and naked DNA through the common bile duct. Here, we describe the RII technique and key infusion parameters for delivering plasmid DNA and DNA nanoparticles to the rat liver. After RII of plasmid DNA, the level of transgene expression in rat liver is comparable to that achieved by hydrodynamic injection of plasmid DNA, which is considered to be "gold standard" for liver-targeted gene delivery. RII has also been shown to significantly enhance the gene delivery efficiency by polymer/DNA nanoparticles in comparison with intravenous and intraportal infusions. This method induces minimal level of cytotoxicity and damage to the liver and bile duct. Due to these advantages, RII has the potential to be used for delivering various gene vectors in clinical setting through the endoscopic retrograde cholangiopancreatography procedure.


Asunto(s)
Sistema Biliar , ADN/administración & dosificación , Técnicas de Transferencia de Gen/instrumentación , Bombas de Infusión , Hígado/metabolismo , Animales , ADN/química , ADN/genética , Luciferasas/genética , Mediciones Luminiscentes , Nanopartículas/química , Plásmidos/genética , Polímeros/química , Ratas , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...