Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 15: 1296955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756489

RESUMEN

Laughter is a universal, nonverbal vocal expression of broad significance for humans. Interestingly, rather little is known about how often we laugh and how laughter is associated with our personality. In a large, event-based, experience sampling method study (N = 52; k = 9,261 assessments) using wrist-worn wearables and a physical analogue scale, we analyzed belly laughs and fit of laughter events in participants' everyday life for 4 weeks. Additionally, we assessed associations with laughter frequency such as personality, happiness, life satisfaction, gelotophobia (i.e., fear of being laughed at), and cheerfulness. Validating our new measurement approach (i.e., wearables, physical analogue scale), laughter events elicited higher happiness ratings compared to reference assessments, as expected. On average, participants reported 2.5 belly laughs per day and on every fourth day a fit of laughter. As expected, participants who were happier and more satisfied with their life laughed more frequently than unhappier, unsatisfied participants. Women and younger participants laughed significantly more than men and older participants. Regarding personality, laughter frequency was positively associated with openness and conscientiousness. No significant association was found for gelotophobia, and results for cheerfulness and related concepts were mixed. By using state-of-the-art statistical methods (i.e., recurrent event regression) for the event-based, multi-level data on laughter, we could replicate past results on laughing.

2.
Front Psychiatry ; 15: 1386984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638415

RESUMEN

Adolescent major depressive disorder (MDD) is associated with altered resting-state connectivity between the default mode network (DMN) and the salience network (SN), which are involved in self-referential processing and detecting and filtering salient stimuli, respectively. Using spectral dynamical causal modelling, we investigated the effective connectivity and input sensitivity between key nodes of these networks in 30 adolescents with MDD and 32 healthy controls while undergoing resting-state fMRI. We found that the DMN received weaker inhibition from the SN and that the medial prefrontal cortex and the anterior cingulate cortex showed reduced self-inhibition in MDD, making them more prone to external influences. Moreover, we found that selective serotonin reuptake inhibitor (SSRI) intake was associated with decreased and increased self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest that adolescent MDD is characterized by a hierarchical imbalance between the DMN and the SN, which could affect the integration of emotional and self-related information. We propose that SSRIs may help restore network function by modulating excitatory/inhibitory balance in the DMN and the SN. Our study highlights the potential of prefrontal-amygdala interactions as a biomarker and a therapeutic target for adolescent depression.

3.
Neuroimage Clin ; 40: 103542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988996

RESUMEN

BACKGROUND: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. METHODS: The large sample of children and adolescents aged 8-18 years (n = 207; mean age = 13.30±2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. RESULTS: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled for. For cases, reactive and proactive aggression scores were related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. CONCLUSIONS: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Masculino , Niño , Adolescente , Humanos , Trastorno de la Conducta/diagnóstico por imagen , Agresión/psicología , Emociones , Encéfalo/diagnóstico por imagen
4.
Sci Data ; 10(1): 665, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773162

RESUMEN

The inescapable fact that human life is perpetually embedded in a tangible biogeophysical environment - and the consequences that this has for individuals and societies - have long fascinated scholars of all backgrounds. Technological progress and the advent of big data have spurred ever-more precise attempts to quantify our biogeophysical environments. However, many such datasets lack spatial granularity, global coverage, content depth, or accessibility. Here, we introduce ecolo-zip, a novel geospatial dataset that provides a granular-yet-global, parsimonious-yet-rich ecological characterization of over 1.5 million postal codes across 94 countries and regions. Combining two large-scale satellite image resources (ASTER; SRTM, ICC = 0.999) and a customized geospatial sampling model, we provide high-resolution indicators of physical topography (elevation, mountainousness, distance to sea), vegetation (normalized difference vegetation index), and climate (surface temperature). With this resource - featuring methodological details, visualizations, and application suggestions - we hope to contribute towards understanding the multi-faceted interactions between humans and their environments.

5.
Neuroimage ; 268: 119869, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639004

RESUMEN

Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.


Asunto(s)
Mapeo Encefálico , Dislexia , Humanos , Niño , Encéfalo , Dislexia/diagnóstico por imagen , Lóbulo Parietal , Lingüística , Imagen por Resonancia Magnética
6.
Front Neurosci ; 17: 1286665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274498

RESUMEN

Introduction: Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods: The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results: Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion: In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.

7.
Transl Psychiatry ; 12(1): 195, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538052

RESUMEN

Adolescence represents a critical developmental period where the prevalence of major depressive disorder (MDD) increases. Aberrant emotion processing is a core feature of adolescent MDD that has been associated with functional alterations within the prefrontal-amygdala circuitry. In this study, we tested cognitive and neural mechanisms of emotional face processing in adolescents with MDD utilizing a combination of computational modeling and neuroimaging. Thirty adolescents with MDD (age: M = 16.1 SD = 1.4, 20 females) and 33 healthy controls (age: M = 16.2 SD = 1.9, 20 females) performed a dynamic face- and shape-matching task. A linear ballistic accumulator model was fit to the behavioral data to study differences in evidence accumulation. We used dynamic causal modeling (DCM) to study effective connectivity in the prefrontal-amygdala network to reveal the neural underpinnings of cognitive impairments while performing the task. Face processing efficiency was reduced in the MDD group and most pronounced for ambiguous faces with neutral emotional expressions. Critically, this reduction was related to increased deactivation of the subgenual anterior cingulate (sgACC). Connectivity analysis showed that MDD exhibited altered functional coupling in a distributed network spanning the fusiform face area-lateral prefrontal cortex-sgACC and the sgACC-amygdala pathway. Our results suggest that MDD is related to impairments of processing nuanced facial expressions. Distributed dysfunctional coupling in the face processing network might result in inefficient evidence sampling and inappropriate emotional responses contributing to depressive symptomatology. Our study provides novel insights in the characterization of brain function in adolescents with MDD that strongly emphasize the critical role of aberrant prefrontal-amygdala interactions during emotional face processing.


Asunto(s)
Trastorno Depresivo Mayor , Reconocimiento Facial , Adolescente , Amígdala del Cerebelo , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Emociones/fisiología , Expresión Facial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
8.
Artículo en Inglés | MEDLINE | ID: mdl-34144217

RESUMEN

BACKGROUND: Understanding the mechanisms in the brain's incentive network that give rise to symptoms of major depressive disorder (MDD) during adolescence provides new perspectives to address MDD in early stages of development. This functional magnetic resonance imaging study determines whether instrumental vigor and brain responses to appetitive and aversive monetary incentives are altered in adolescent MDD and associated with symptom severity. METHODS: Adolescents with moderate to severe MDD (n = 30, mean age [SD] = 16.1 [1.4] years) and healthy control subjects (n = 33, mean age = 16.2 [1.9] years) matched for age, sex, and IQ performed a monetary incentive delay task. During outcome presentation, prediction error signals were used to study the response and coupling of the incentive network during learning of cue-outcome associations. A computational reinforcement model was used to assess adaptation of response vigor. Brain responses and effective connectivity to model-derived prediction errors were assessed and related to depression severity and anhedonia levels. RESULTS: Participants with MDD behaved according to a more simplistic learning model and exhibited slower learning. Effective connectivity analysis of functional magnetic resonance imaging data revealed that impaired loss error processing in the orbitofrontal cortex was associated with aberrant gain control. Anhedonia scores correlated with loss-related error signals in the posterior insula and habenula. CONCLUSIONS: Adolescent MDD is selectively related to impaired processing of error signals during loss, but not reward, in the orbitofrontal cortex. Aberrant evaluation of loss outcomes might reflect an early mechanism of how negative bias and helplessness manifest in the brain. This approach sheds light on pathomechanisms in MDD and may improve early diagnosis and treatment selection.


Asunto(s)
Trastorno Depresivo Mayor , Habénula , Adolescente , Anhedonia , Reacción de Prevención , Depresión , Humanos , Lactante , Corteza Prefrontal/diagnóstico por imagen
9.
Neuroimage ; 237: 118186, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34020019

RESUMEN

The ability to enhance motivated performance through incentives is crucial to guide and ultimately optimise the outcome of goal-directed behaviour. It remains largely unclear how motivated behaviour and performance develops particularly across adolescence. Here, we used computational fMRI to assess how response speed and its underlying neural circuitry are modulated by reward and loss in a monetary incentive delay paradigm. We demonstrate that maturational fine-tuning of functional coupling within the cortico-striatal incentive circuitry from adolescence to adulthood facilitates the ability to enhance performance selectively for higher subjective values. Additionally, during feedback, we found developmental sex differences of striatal representations of reward prediction errors in an exploratory analysis. Our findings suggest that a reduced capacity to utilise subjective value for motivated behaviour in adolescence is rooted in immature information processing in the incentive system. This indicates that the neurocircuitry for coordination of incentivised, motivated cognitive control acts as a bottleneck for behavioural adjustments in adolescence.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Cuerpo Estriado/crecimiento & desarrollo , Neuroimagen Funcional , Desarrollo Humano/fisiología , Motivación/fisiología , Red Nerviosa/crecimiento & desarrollo , Recompensa , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Niño , Cuerpo Estriado/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
10.
Eur Child Adolesc Psychiatry ; 30(8): 1237-1249, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32789793

RESUMEN

There is increasing evidence for altered brain resting state functional connectivity in adolescents with disruptive behavior. While a considerable body of behavioral research points to differences between reactive and proactive aggression, it remains unknown whether these two subtypes have dissociable effects on connectivity. Additionally, callous-unemotional traits are important specifiers in subtyping aggressive behavior along the affective dimension. Accordingly, we examined associations between two aggression subtypes along with callous-unemotional traits using a seed-to-voxel approach. Six functionally relevant seeds were selected to probe the salience and the default mode network, based on their presumed role in aggression. The resting state sequence was acquired from 207 children and adolescents of both sexes [mean age (standard deviation) = 13.30 (2.60); range = 8.02-18.35] as part of a Europe-based multi-center study. One hundred eighteen individuals exhibiting disruptive behavior (conduct disorder/oppositional defiant disorder) with varying comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms were studied, together with 89 healthy controls. Proactive aggression was associated with increased left amygdala-precuneus coupling, while reactive aggression related to hyper-connectivities of the posterior cingulate cortex (PCC) to the parahippocampus, the left amygdala to the precuneus and to hypo-connectivity between the right anterior insula and the nucleus caudate. Callous-unemotional traits were linked to distinct hyper-connectivities to frontal, parietal, and cingulate areas. Additionally, compared to controls, cases demonstrated reduced connectivity of the PCC and left anterior insula to left frontal areas, the latter only when controlling for ADHD scores. Taken together, this study revealed aggression-subtype-specific patterns involving areas associated with emotion, empathy, morality, and cognitive control.


Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Amígdala del Cerebelo , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Trastorno de la Conducta/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
11.
Neuroimage ; 211: 116585, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996330

RESUMEN

Despite its importance as the prime method for non-invasive assessment of human brain function, functional MRI (fMRI) was repeatedly challenged with regards to the validity of the fMRI-derived brain activation maps. Amygdala fMRI was particularly targeted, as the amygdala's anatomical position in the ventral brain combined with strong magnetic field inhomogeneities and proximity to large vessels pose considerable obstacles for robust activation mapping. In this high-resolution study performed at ultra-high field (7T) fMRI, we aimed at (1) investigating systematic replicability of amygdala group-level activation in response to an established emotion processing task by varying task instruction and acquisition parameters and (2) testing for intra- and intersession reliability. At group-level, our results show statistically significant activation in bilateral amygdala and fusiform gyrus for each of the runs acquired. In addition, while fusiform gyrus activations are consistent across runs and sessions, amygdala activation levels show habituation effects across runs. This amygdala habituation effect is replicated in a session repeated two weeks later. Varying task instruction between matching emotions and matching persons does not change amygdala activation strength. Also, comparing two acquisition protocols with repetition times of either 700 â€‹ms or 1400 â€‹ms did not result in statistically significant differences of activation levels. Regarding within-subject reliability of amygdala activation, despite considerable variance in individual habituation patterns, we report fair to good inter-session reliability for the first run and excellent reliability for averages over runs. We conclude that high-resolution fMRI at 7T allows for robust mapping of amygdala activation in a broad range of variations. Our results of amygdala 7T fMRI are suitable to inform methodology and may encourage future studies to continue using emotion discrimination paradigms in clinical and non-clinical applications.


Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico/normas , Emociones/fisiología , Reconocimiento Facial/fisiología , Habituación Psicofisiológica/fisiología , Imagen por Resonancia Magnética/normas , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Expresión Facial , Femenino , Estudios de Seguimiento , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
12.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31289107

RESUMEN

Despite the importance of the prefrontal-amygdala (AMY) network for emotion processing, valence-dependent coupling within this network remains elusive. In this study, we assessed the effect of emotional valence on brain activity and effective connectivity. We tested which functional pathways within the prefrontal-AMY network are specifically engaged during the processing of emotional valence. Thirty-three healthy adults were examined with functional magnetic resonance imaging while performing a dynamic faces and dynamic shapes matching task. The valence of the facial expressions varied systematically between positive, negative, and neutral across the task. Functional contrasts determined core areas of the emotion processing circuitry, comprising the medial prefrontal cortex (MPFC), the right lateral prefrontal cortex (LPFC), the AMY, and the right fusiform face area (FFA). Dynamic causal modelling demonstrated that the bidirectional coupling within the prefrontal-AMY circuitry is modulated by emotional valence. Additionally, Bayesian model averaging showed significant bottom-up connectivity from the AMY to the MPFC during negative and neutral, but not positive, valence. Thus, our study provides strong evidence for alterations of bottom-up coupling within the prefrontal-AMY network as a function of emotional valence. Thereby our results not only advance the understanding of the human prefrontal-AMY circuitry in varying valence context, but, moreover, provide a model to examine mechanisms of valence-sensitive emotional dysregulation in neuropsychiatric disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Emociones/fisiología , Reconocimiento Facial/fisiología , Corteza Prefrontal/fisiología , Adulto , Teorema de Bayes , Mapeo Encefálico , Expresión Facial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto Joven
13.
Hum Brain Mapp ; 39(8): 3241-3252, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29665228

RESUMEN

Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high-field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Creatividad , Imagen por Resonancia Magnética , Solución de Problemas/fisiología , Adulto , Asociación , Mapeo Encefálico , Emociones/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...