Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
2.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993656

RESUMEN

Combination treatment of Low-Intensity Vibration (LIV) with zoledronic acid (ZA) was hypothesized to preserve bone mass and muscle strength while reducing adipose tissue accrual associated with complete estrogen (E 2 )-deprivation in young and skeletally mature mice. Complete E 2 -deprivation (surgical-ovariectomy (OVX) and daily injection of aromatase inhibitor (AI) letrozole) were performed on 8-week-old C57BL/6 female mice for 4 weeks following commencement of LIV administration or control (no LIV), for 28 weeks. Additionally, 16-week-old C57BL/6 female E 2 -deprived mice were administered ±LIV twice daily and supplemented with ±ZA (2.5 ng/kg/week). By week 28, lean tissue mass quantified by dual-energy X-ray absorptiometry was increased in younger OVX/AI+LIV(y) mice, with increased myofiber cross-sectional area of quadratus femorii. Grip strength was greater in OVX/AI+LIV(y) mice than OVX/AI(y) mice. Fat mass remained lower in OVX/AI+LIV(y) mice throughout the experiment compared with OVX/AI(y) mice. OVX/AI+LIV(y) mice exhibited increased glucose tolerance and reduced leptin and free fatty acids than OVX/AI(y) mice. Trabecular bone volume fraction and connectivity density increased in the vertebrae of OVX/AI+LIV(y) mice compared to OVX/AI(y) mice; however, this effect was attenuated in the older cohort of E 2 -deprived mice, specifically in OVX/AI+ZA mice, requiring combined LIV with ZA to increase trabecular bone volume and strength. Similar improvements in cortical bone thickness and cross-sectional area of the femoral mid-diaphysis were observed in OVX/AI+LIV+ZA mice, resulting in greater fracture resistance. Our findings demonstrate that the combination of mechanical signals in the form of LIV and anti-resorptive therapy via ZA improve vertebral trabecular bone and femoral cortical bone, increase lean mass, and reduce adiposity in mice undergoing complete E 2 -deprivation. One Sentence Summary: Low-magnitude mechanical signals with zoledronic acid suppressed bone and muscle loss and adiposity in mice undergoing complete estrogen deprivation. Translational Relevance: Postmenopausal patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors to reduce tumor progression experience deleterious effects to bone and muscle subsequently develop muscle weakness, bone fragility, and adipose tissue accrual. Bisphosphonates (i.e., zoledronic acid) prescribed to inhibit osteoclast-mediated bone resorption are effective in preventing bone loss but may not address the non-skeletal effects of muscle weakness and fat accumulation that contribute to patient morbidity. Mechanical signals, typically delivered to the musculoskeletal system during exercise/physical activity, are integral for maintaining bone and muscle health; however, patients undergoing treatments for breast cancer often experience decreased physical activity which further accelerates musculoskeletal degeneration. Low-magnitude mechanical signals, in the form of low-intensity vibrations, generate dynamic loading forces similar to those derived from skeletal muscle contractility. As an adjuvant to existing treatment strategies, low-intensity vibrations may preserve or rescue diminished bone and muscle degraded by breast cancer treatment.

4.
Cell Biochem Biophys ; 80(2): 415-426, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35191000

RESUMEN

Ubiquitin proteasome system was found to contribute to bone loss by regulating bone turnover and metabolism, by modulating osteoblast differentiation and bone formation as well as formation of osteoclasts that contribute to bone resorption. Muscle Ring Finger (MuRF) are novel ubiquitin ligases, which are muscle specific and have not been much implicated in the bone but have been implicated in several human diseases including heart failure and skeletal muscle atrophy. This study is aimed at understanding the role of MuRF1, MuRF2, MuRF3 and Atrogin which are distinct MuRF family proteins in bone homeostasis. Wildtype, heterozygous and homozygous mice of each of the isoforms were used and the bone microarchitecture and mechanical properties were assessed using microCT and biomechanics. MuRF1 depletion was found to alter cortical properties in both males and females, but only trabecular spacing in the females. MuRF2 depletion let to no changes in the cortical and trabecular properties but change in the strain to yield in the females. Depletion of MuRF3 led to decrease in the cortical properties in the females and increase in the trabecular properties in the males. Atrogin depletion was found to reduce cortical properties in both males and females, whereas some trabecular properties were found to be reduced in the females. Each muscle-specific ligase was found to alter the bone structure and mechanical properties in a distinct a sex-dependent manner.


Asunto(s)
Proteínas Musculares , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculos/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Curr Pathobiol Rep ; 9(4): 93-105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900402

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 betacoronavirus and has taken over 761,426 American lives as of the date of publication and will likely result in long-term, if not permanent, tissue damage for countless patients. COVID-19 presents with diverse and multisystemic pathologic processes, including a hyperinflammatory response, acute respiratory distress syndrome (ARDS), vascular injury, microangiopathy, tissue fibrosis, angiogenesis, and widespread thrombosis across multiple organs, including the lungs, heart, kidney, liver, and brain. C-X-C chemokines contribute to these pathologies by attracting inflammatory mediators, the disruption of endothelial cell integrity and function, and the initiation and propagation of the cytokine storm. Among these, CXCL10 is recognized as a critical contributor to the hyperinflammatory state and poor prognosis in COVID-19. CXCL10 is also known to regulate growth factor-induced fibrosis, and recent evidence suggests the CXCL10-CXCR3 signaling system may be vital in targeting convergent pro-inflammatory and pro-fibrotic pathways. This review will explore the mechanistic role of CXCL10 and related chemokines in fibrotic complications associated with COVID-19 and the potential of CXCL10-targeted therapeutics for early intervention and long-term treatment of COVID-19-induced fibrosis.

7.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34403363

RESUMEN

MicroRNA-150 (miR-150) is downregulated in patients with multiple cardiovascular diseases and in diverse mouse models of heart failure (HF). miR-150 is significantly associated with HF severity and outcome in humans. We previously reported that miR-150 is activated by ß-blocker carvedilol (Carv) and plays a protective role in the heart using a systemic miR-150 KO mouse model. However, mechanisms that regulate cell-specific miR-150 expression and function in HF are unknown. Here, we demonstrate that potentially novel conditional cardiomyocyte-specific (CM-specific) miR-150 KO (miR-150 cKO) in mice worsens maladaptive cardiac remodeling after myocardial infarction (MI). Genome-wide transcriptomic analysis in miR-150 cKO mouse hearts identifies small proline-rich protein 1a (Sprr1a) as a potentially novel target of miR-150. Our studies further reveal that Sprr1a expression is upregulated in CMs isolated from ischemic myocardium and subjected to simulated ischemia/reperfusion, while its expression is downregulated in hearts and CMs by Carv. We also show that left ventricular SPRR1A is upregulated in patients with HF and that Sprr1a knockdown in mice prevents maladaptive post-MI remodeling. Lastly, protective roles of CM miR-150 are, in part, attributed to the direct and functional repression of proapoptotic Sprr1a. Our findings suggest a crucial role for the miR-150/SPRR1A axis in regulating CM function post-MI.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/genética , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética , Antagonistas Adrenérgicos beta/farmacología , Animales , Apoptosis/fisiología , Carvedilol/farmacología , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Regulación hacia Abajo , Femenino , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Regulación hacia Arriba
8.
Nat Commun ; 12(1): 2942, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011988

RESUMEN

The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Insuficiencia Cardíaca/fisiopatología , Miocitos Cardíacos/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcómeros/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 11(6): 1779-1798, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33200567

RESUMEN

BACKGROUND: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. METHODS: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. RESULTS: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. CONCLUSIONS: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.


Asunto(s)
Caquexia , Neoplasias Colorrectales , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/tratamiento farmacológico , Modelos Animales de Enfermedad , Neoplasias Hepáticas , Masculino , Ratones , Músculo Esquelético
10.
Nat Commun ; 11(1): 5237, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082318

RESUMEN

Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we report that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein half-life, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKG-mediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Isquemia/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Femenino , Corazón/fisiopatología , Humanos , Isquemia/enzimología , Isquemia/genética , Isquemia/fisiopatología , Masculino , Ratones , Miocardio/metabolismo , Fosforilación , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA