Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Addict Biol ; 29(2): e13366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38380710

RESUMEN

Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.


Asunto(s)
Alcoholismo , Núcleos Parabraquiales , Núcleos Septales , Masculino , Ratones , Femenino , Animales , Etanol/farmacología
2.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 48-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206283

RESUMEN

BACKGROUND: Adolescent alcohol use can produce long-lasting alterations in brain function, potentially leading to adverse health outcomes in adulthood. Emerging evidence suggests that chronic alcohol use can increase pain sensitivity or exacerbate existing pain conditions, but the potential neural mechanisms underlying these effects require further investigation. Here, we evaluate the impact of chronic ethanol vapor on mechanical sensitivity over the course of acute and protracted withdrawal in adolescent and adult male and female mice, and its potential association with alterations in corticotropin-releasing factor (CRF) signaling within the bed nucleus of the stria terminalis (BNST). METHODS: Adolescent and adult male and female mice underwent intermittent ethanol vapor exposure on 4 days/week for 2 weeks. Mechanical thresholds were evaluated 5 h and 7, 14, 21, and 28 d after cessation of ethanol exposure using the von Frey test. For mice with a history of adolescent ethanol exposure, brains were collected for in situ RNAscope processing after the final test. Messenger RNA expression of c-Fos, Crfr1, and Crf in the BNST subregions was examined. RESULTS: Exposure to intermittent ethanol vapor induced persistent mechanical hypersensitivity during withdrawal in both adolescent and adult mice. Notably, the effect was more transient in mice exposed to ethanol during adulthood, resolving by day 28 after ethanol exposure. Furthermore, both male and female mice with a history of adolescent ethanol exposure exhibited increased activation of CRF receptor type 1 (CRFR1) neurons within the dorsolateral BNST. CONCLUSIONS: Our results support the conclusion that intermittent ethanol exposure can induce mechanical hypersensitivity, potentially through the activation of BNST CRFR1 neurons. These findings provide a basis for future studies aimed at evaluating specific subpopulations of BNST neurons and their contribution to pain in individuals with a history of alcohol use.

3.
Biol Psychiatry ; 95(3): 207-219, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717844

RESUMEN

BACKGROUND: Exposure to alcohol during adolescence produces many effects that last well into adulthood. Acute alcohol use is analgesic, and people living with pain report drinking alcohol to reduce pain, but chronic alcohol use produces increases in pain sensitivity. METHODS: We tested the acute and lasting effects of chronic adolescent intermittent ethanol (AIE) exposure on pain-related behavioral and brain changes in male and female rats. We also tested the long-term effects of AIE on synaptic transmission in midbrain (ventrolateral periaqueductal gray [vlPAG])-projecting central amygdala (CeA) neurons using whole-cell electrophysiology. Finally, we used circuit-based approaches (DREADDs [designer receptors exclusively activated by designer drugs]) to test the role of vlPAG-projecting CeA neurons in mediating AIE effects on pain-related outcomes. RESULTS: AIE produced long-lasting hyperalgesia in male, but not female, rats. Similarly, AIE led to a reduction in synaptic strength of medial CeA cells that project to the vlPAG in male, but not female, rats. Challenge with an acute painful stimulus (i.e., formalin) in adulthood produced expected increases in pain reactivity, and this effect was exaggerated in male rats with a history of AIE. Finally, CeA-vlPAG circuit activation rescued AIE-induced hypersensitivity in male rats. CONCLUSIONS: Our findings are the first, to our knowledge, to show long-lasting sex-dependent effects of adolescent alcohol exposure on pain-related behaviors and brain circuits in adult animals. This work has implications for understanding the long-term effects of underage alcohol drinking on pain-related behaviors in humans.


Asunto(s)
Núcleo Amigdalino Central , Consumo de Alcohol en Menores , Humanos , Adolescente , Masculino , Ratas , Femenino , Animales , Hiperalgesia , Etanol/farmacología , Dolor
5.
Alzheimers Dement ; 18(10): 1711-1720, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35170835

RESUMEN

INTRODUCTION: Epigenetic stimuli induce beneficial or detrimental changes in gene expression, and consequently, phenotype. Some of these phenotypes can manifest across the lifespan-and even in subsequent generations. Here, we used a mouse model of vascular cognitive impairment and dementia (VCID) to determine whether epigenetically induced resilience to specific dementia-related phenotypes is heritable by first-generation progeny. METHODS: Our systemic epigenetic therapy consisted of 2 months of repetitive hypoxic "conditioning" (RHC) prior to chronic cerebral hypoperfusion in adult C57BL/6J mice. Resultant changes in object recognition memory and hippocampal long-term potentiation (LTP) were assessed 3 and 4 months later, respectively. RESULTS: Hypoperfusion-induced memory/plasticity deficits were abrogated by RHC. Moreover, similarly robust dementia resilience was documented in untreated cerebral hypoperfused animals derived from RHC-treated parents. CONCLUSIONS: Our results in experimental VCID underscore the efficacy of epigenetics-based treatments to prevent memory loss, and demonstrate for the first time the heritability of an induced resilience to dementia.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Animales , Ratones , Ratones Endogámicos C57BL , Demencia Vascular/genética , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Trastornos de la Memoria , Epigénesis Genética
6.
Transl Psychiatry ; 11(1): 178, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731684

RESUMEN

Adolescent alcohol use is one of the strongest predictors for the development of an alcohol use disorder (AUD). Notably, this period of risk coincides with the development of affective disorders, which disproportionately impact and drive problematic drinking behavior in women. Stress is a particularly salient factor that drives relapse during periods of abstinence. Previous work in our lab has shown that adolescent intermittent ethanol vapor (AIE) produces sex-dependent changes in glutamatergic activity in the bed nucleus of the stria terminalis (BNST) and behavioral outcomes following acute restraint stress in adulthood. In females, AIE disrupts group 1 metabotropic glutamate (mGlu1/5) receptor activity and enhances anhedonia-like behavior. The current study site-specifically knocked down mGlu5 receptors in the BNST of male and female Grm5loxp mice, exposed them to AIE, and observed the interaction of AIE and stress on negative affect-like behaviors in adulthood. These negative affect-like behaviors included the novelty-induced hypophagia task following acute restraint stress, open field activity, and contextual fear conditioning. Overall, we replicated our previous findings that AIE enhanced anhedonia-like activity in the novelty-induced hypophagia task in females and fear acquisition in males. The primary effect of BNST-mGlu5 receptor knockdown was that it independently enhanced anhedonia-like activity in females. Correlation analyses revealed that behavior in these paradigms showed poor interdependence. These results indicate that preclinical models of negative affective-like states encompass distinct features that may have independent, clinically relevant mechanisms. Further, modulating mGlu5 receptors is a prospective treatment target for females experiencing anhedonic-like states that make them susceptible to alcohol relapse.


Asunto(s)
Alcoholismo , Núcleos Septales , Animales , Etanol , Femenino , Masculino , Ratones , Estudios Prospectivos , Restricción Física
7.
Addict Biol ; 26(4): e12990, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33331103

RESUMEN

The neural adaptations that occur during the transition to alcohol dependence are not entirely understood but may include a gradual recruitment of brain stress circuitry by mesolimbic reward circuitry that is activated during early stages of alcohol use. Here, we focused on dopaminergic and nondopaminergic projections from the ventral tegmental area (VTA), important for mediating acute alcohol reinforcement, to the central nucleus of the amygdala (CeA), important for alcohol dependence-related negative affect and escalated alcohol drinking. The VTA projects directly to the CeA, but the functional relevance of this circuit is not fully established. Therefore, we combined retrograde and anterograde tracing, anatomical, and electrophysiological experiments in mice and rats to demonstrate that the CeA receives input from both dopaminergic and nondopaminergic projection neurons primarily from the lateral VTA. We then used slice electrophysiology and fos immunohistochemistry to test the effects of alcohol dependence on activity and activation profiles of CeA-projecting neurons in the VTA. Our data indicate that alcohol dependence activates midbrain projections to the central amygdala, suggesting that VTA projections may trigger plasticity in the CeA during the transition to alcohol dependence and that this circuit may be involved in mediating behavioral dysregulation associated with alcohol dependence.


Asunto(s)
Alcoholismo/fisiopatología , Núcleo Amigdalino Central/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Ratones , Vías Nerviosas/efectos de los fármacos , Ratas , Recompensa
8.
Neural Regen Res ; 15(8): 1496-1501, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31997814

RESUMEN

Adolescent alcohol abuse is a substantive public health problem that has been the subject of intensive study in recent years. Despite reports of a wide range of effects of adolescent intermittent ethanol (AIE) exposure on brain and behavior, little is known about the mechanisms that may underlie those effects, and even less about treatments that might reverse them. Recent studies from our laboratory have indicated that AIE produced enduring changes in astrocyte function and synaptic activity in the hippocampal formation, suggesting the possibility of an alteration in astrocyte-neuronal connectivity and function. We utilized astrocyte-specific, membrane restricted viral labeling paired with immunohistochemistry to perform confocal single cell astrocyte imaging, three-dimensional reconstruction, and quantification of astrocyte morphology in hippocampal area CA1 from adult rats after AIE. Additionally, we assessed the colocalization of astrocyte plasma membrane labeling with immunoreactivity for AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1, an AMPA receptor subunit and established neuronal marker of excitatory synapses, as a metric of astrocyte-synapse proximity. AIE significantly reduced the colocalization of the astrocyte plasma membrane with synaptic marker puncta in adulthood. This is striking in that it suggests not only an alteration of the physical association of astrocytes with synapses by AIE, but one that lasts into adulthood - well after the termination of alcohol exposure. Perhaps even more notable, the AIE-induced reduction of astrocyte-synapse interaction was reversed by sub-chronic treatment with the clinically used agent, gabapentin (Neurontin), in adulthood. This suggests that a medication in common clinical use may have the potential to reverse some of the enduring effects of adolescent alcohol exposure on brain function. All animal experiments conducted were approved by the Duke University Institutional Animal Care and Use Committee (Protocol Registry Number A159-18-07) on July 27, 2018.

9.
Front Cell Neurosci ; 13: 440, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636539

RESUMEN

Persistent alterations in synaptic plasticity and neurotransmission are thought to underlie the heightened risk of adolescent-onset drinkers to develop alcohol use disorders in adulthood. The bed nucleus of the stria terminalis (BNST) is a compelling region to study the consequences of early alcohol, as it is innervated by cortical structures which undergo continued maturation during adolescence and is critically involved in stress and negative affect-associated relapse. In adult mice, chronic ethanol induces long-term changes in GluN2B-containing NMDA receptors (NMDARs) of the BNST. It remains unclear, however, whether the adolescent BNST is susceptible to such persistent alcohol-induced modifications and, if so, whether they are preserved into adulthood. We therefore examined the short- and long-term consequences of adolescent intermittent ethanol exposure (AIE) on NMDAR transmission and plasticity in the BNST of male and female mice. Whole-cell voltage clamp recordings revealed greater glutamatergic tone in the BNST of AIE-treated males and females relative to air-controls. This change, which corresponded to an increase in presynaptic glutamate release, resulted in altered postsynaptic NMDAR metaplasticity and enhanced GluN2B transmission in males but not females. Only AIE-treated males displayed upregulated GluN2B expression (determined by western blot analysis). While these changes did not persist into adulthood under basal conditions, exposing adult males (but not females) to acute restraint stress reinstated AIE-induced alterations in NMDAR metaplasticity and GluN2B function. These data demonstrate that adolescent alcohol exposure specifically modifies NMDARs in the male BNST, that the plastic changes to NMDARs are long-lasting, and that they can be engaged by stress.

10.
Brain Sci ; 9(8)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366097

RESUMEN

Allosteric modulators of metabotropic glutamate 5 receptors (mGlu5 receptors) have been identified as a promising treatment to independently alleviate both negative affective states and ethanol-seeking and intake. However, these conditions are often comorbid and might precipitate one another. Acute and protracted ethanol withdrawal can lead to negative affective states. In turn, these states are primary drivers of alcohol relapse, particularly among women. The current review synthesizes preclinical studies that have observed the role of mGlu5 receptor modulation in negative affective states following ethanol exposure. The primary behavioral assays discussed are ethanol-seeking and intake, development and extinction of ethanol-associated cues and contexts, behavioral despair, and anxiety-like activity. The work done to-date supports mGlu5 receptor modulation as a promising target for mediating negative affective states to reduce ethanol intake or prevent relapse. Limitations in interpreting these data include the lack of models that use alcohol-dependent animals, limited use of adolescent and female subjects, and a lack of comprehensive evaluations of negative affective-like behavior.

12.
Cell Rep ; 23(8): 2264-2272, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791838

RESUMEN

In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning.


Asunto(s)
Cuerpo Estriado/fisiología , Aprendizaje Discriminativo/fisiología , Adaptación Fisiológica , Animales , Conducta de Elección , Proteínas del Citoesqueleto/metabolismo , Luz , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo
13.
Addict Biol ; 22(2): 275-290, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26549202

RESUMEN

N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hipocampo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Proteínas del Citoesqueleto/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Etanol/administración & dosificación , Hipocampo/metabolismo , Proteínas de Andamiaje Homer/efectos de los fármacos , Proteínas de Andamiaje Homer/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
14.
PLoS One ; 11(5): e0155951, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27213757

RESUMEN

Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood.


Asunto(s)
Etanol/efectos adversos , Hipocampo/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Adolescente , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Humanos , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Consumo de Alcohol en Menores
15.
Cold Spring Harb Perspect Med ; 3(4): a012161, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23426579

RESUMEN

The extended amygdala is a series of interconnected, embryologically similar series of nuclei in the brain that are thought to play key roles in aspects of alcohol dependence, specifically in stress-induced increases in alcohol-seeking behaviors. Plasticity of excitatory transmission in these and other brain regions is currently an intense area of scrutiny as a mechanism underlying aspects of addiction. N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a critical role in plasticity at excitatory synapses and have been identified as major molecular targets of ethanol. Thus, this article will explore alcohol and NMDAR interactions first at a general level and then focusing within the extended amygdala, in particular on the bed nucleus of the stria terminalis (BNST).


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Núcleos Septales/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/etiología , Humanos , Ratas , Núcleos Septales/metabolismo , Estrés Psicológico/etiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(5): E278-87, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22219357

RESUMEN

The bed nucleus of the stria terminalis (BNST) is a critical region for alcohol/drug-induced negative affect and stress-induced reinstatement. NMDA receptor (NMDAR)-dependent plasticity, such as long-term potentiation (LTP), has been postulated to play key roles in alcohol and drug addiction; yet, to date, little is understood regarding the mechanisms underlying LTP of the BNST, or its regulation by ethanol. Acute and chronic exposure to ethanol modulates glutamate transmission via actions on NMDARs. Despite intense investigation, tests of subunit specificity of ethanol actions on NMDARs using pharmacological approaches have produced mixed results. Thus, we use a conditional GluN2B KO mouse line to assess both basal and ethanol-dependent function of this subunit at glutamate synapses in the BNST. Deletion of GluN2B eliminated LTP, as well as actions of ethanol on NMDAR function. Further, we show that chronic ethanol exposure enhances LTP formation in the BNST. Using KO-validated pharmacological approaches with Ro25-6981 and memantine, we provide evidence suggesting that chronic ethanol exposure enhances LTP in the BNST via paradoxical extrasynaptic NMDAR involvement. These findings demonstrate that GluN2B is a key point of regulation for ethanol's actions and suggest a unique role of extrasynaptic GluN2B-containing receptors in facilitating LTP.


Asunto(s)
Etanol/farmacología , Ácido Glutámico/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Etanol/administración & dosificación , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/efectos de los fármacos
17.
Psychopharmacology (Berl) ; 218(1): 179-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21643675

RESUMEN

RATIONALE: Stress may elevate ethanol drinking and anxiety associated with ethanol drinking. Studies to identify relevant neurobiological substrates are needed. OBJECTIVE: To assess roles of brain regions in corticotrophin releasing factor (CRF) effects on stressor-enhanced, ethanol deprivation-induced drinking and anxiety-like behavior. METHODS: Ethanol-preferring rats (P rats) were exposed to three cycles of a two-bottle choice paradigm with two 2-day deprivation periods that included 1 h exposure to a restraint stressor. To assess the role of CRF and to identify relevant brain regions, a CRF-1 receptor antagonist (SSR125543; 10 ug) was injected into the nucleus accumbens (NAC), amygdala (Amyg), or dorsal raphe nucleus (DRN) prior to exposure to the restraint stressor. In a second study, CRF (0.5 ug) was injected into one of these regions, or the ventral tegmental area (VTA), or paraventricular nucleus of the hypothalamus (PVN). RESULTS: Applying the restraint stressor during deprivation increased voluntary intake and sensitized anxiety-like behavior. Antagonist injection into the NAC prevented increased drinking without affecting anxiety-like behavior, whereas injection into the Amyg or DRN prevented the anxiety-like behavior without affecting drinking. To confirm CRF actions in the stressor effect, CRF was injected into selected brain regions. NAC injections (but not the VTA, Amyg, DRN, or PVN) facilitated drinking but did not change anxiety-like behavior. Injections into the DRN or Amyg (but not PVN or VTA) enhanced anxiety-like behavior. CONCLUSIONS: Results emphasize that a restraint stressor elevates ethanol intake and sensitizes ethanol deprivation-induced anxiety-like behavior through CRF1 receptors in the NAC and Amyg/DRN, respectively.


Asunto(s)
Ansiedad/etiología , Hormona Liberadora de Corticotropina/administración & dosificación , Etanol/administración & dosificación , Estrés Psicológico/complicaciones , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hidrocarburos Halogenados/farmacología , Masculino , Ratas , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Tiazinas/farmacología
18.
Brain Behav Immun ; 25 Suppl 1: S146-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21377524

RESUMEN

Stress has been shown to facilitate ethanol withdrawal-induced anxiety. Defining neurobiological mechanisms through which stress has such actions is important given the associated risk of relapse. While CRF has long been implicated in the action of stress, current results show that stress elevates the cytokine TNFα in the rat brain and thereby implicates cytokines in stress effects. In support of this view, prior TNFα microinjection into the central amygdala (CeA) of rats facilitated ethanol withdrawal-induced anxiety-a response that could not be attributed to an increase in plasma corticosterone. To test for a possible interaction between cytokines and CRF, a CRF1-receptor antagonist (SSR125543) administered prior to the repeated administration of TNFα or MCP-1/CCL2 reduced the magnitude of the withdrawal-induced anxiety. This finding provided evidence for cytokine action being dependent upon CRF. Additionally, the sensitizing effect of stress on withdrawal-induced anxiety was reduced by treating the repeated stress exposure prior to ethanol with the MEK inhibitor SL327. Consistent with cytokines having a neuromediator function distinct from a neuroimmune action, TNFα increased firing rate and GABA release from CeA neurons. Thus, an interaction of glial and neuronal function is proposed to contribute to the interaction of stress and chronic ethanol. Interrupting this potential glial-neuronal interaction could provide a novel means by which to alter the development of emotional states induced by stress that predict relapse in the alcoholic.


Asunto(s)
Amígdala del Cerebelo/fisiología , Ansiedad/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Citocinas/metabolismo , Etanol/administración & dosificación , Estrés Fisiológico/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Adaptación Psicológica/efectos de los fármacos , Adaptación Psicológica/fisiología , Alcoholes/administración & dosificación , Amígdala del Cerebelo/efectos de los fármacos , Análisis de Varianza , Animales , Corticosterona/sangre , Electrofisiología , Hidrocarburos Halogenados/farmacología , Masculino , Microinyecciones , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Restricción Física , Síndrome de Abstinencia a Sustancias/fisiopatología , Tiazinas/farmacología , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
19.
Alcohol Clin Exp Res ; 34(9): 1603-12, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20586753

RESUMEN

BACKGROUND: Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. METHODS: Male adult and adolescent Sprague-Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5 days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. RESULTS: Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. CONCLUSIONS: In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased release of CRF, and future work will determine how this change relates to behavior.


Asunto(s)
Ansiedad/inducido químicamente , Hormona Liberadora de Corticotropina/farmacología , Etanol/farmacología , Estrés Psicológico/psicología , Síndrome de Abstinencia a Sustancias/psicología , Administración Oral , Factores de Edad , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/complicaciones , Hormona Liberadora de Corticotropina/administración & dosificación , Etanol/administración & dosificación , Inyecciones Intraventriculares , Masculino , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley
20.
J Pharmacol Exp Ther ; 332(1): 298-307, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843974

RESUMEN

In abstinent alcoholics, stress induces negative affect-a response linked to craving and relapse. In rats, repeated stresses at weekly intervals before 5-day ethanol diet sensitize withdrawal-induced anxiety-like behavior ("anxiety") that is blocked by a corticotrophin-releasing factor 1 (CRF-1)-receptor antagonist. Current experiments were performed to identify brain sites that support CRF involvement in stress sensitization of ethanol withdrawal-induced anxiety-like behavior. First, different doses of CRF microinjected weekly into the central amygdala (CeA) before ethanol exposure produced a dose-related sensitization of anxiety during ethanol withdrawal. Subsequently, CRF microinjection into the basolateral amygdala, dorsal raphe nucleus (DRN), or dorsal bed nucleus of the stria terminalis (d-BNST) also sensitized ethanol withdrawal-induced anxiety. In contrast, sensitization of ethanol withdrawal-induced anxiety was not observed after weekly CRF administration into the ventral-BNST, CA1-hippocampal region, or hypothalamic-paraventricular nucleus. Then, experiments documented the CRF receptor subtype responsible for CRF and stress sensitization of withdrawal-induced anxiety. Systemic administration of a CRF-1 receptor antagonist before CRF microinjection into the CeA, DRN, or d-BNST prevented CRF-induced sensitization of anxiety during ethanol withdrawal. Furthermore, repeated microinjections of urocortin-3, a CRF-2 receptor agonist, into the CRF-positive sites did not sensitize anxiety after withdrawal from ethanol. Finally, microinjection of a CRF-1 receptor antagonist into the CeA, DRN, or d-BNST before stress blocked sensitization of anxiety-like behavior induced by the repeated stress/ethanol withdrawal protocol. These results indicate that CRF released by stress acts on CRF-1 receptors within specific brain regions to produce a cumulative adaptation that sensitizes anxiety-like behavior during withdrawal from chronic ethanol exposure.


Asunto(s)
Ansiedad/inducido químicamente , Encéfalo/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Etanol/efectos adversos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Mapeo Encefálico , Hormona Liberadora de Corticotropina/farmacología , Etanol/administración & dosificación , Masculino , Microinyecciones , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Síndrome de Abstinencia a Sustancias/fisiopatología , Síndrome de Abstinencia a Sustancias/psicología , Urocortinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...