Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38619181

RESUMEN

Virtual fencing (VF) is a modern fencing technology that requires the animal to wear a device (e.g., a collar) that emits acoustic signals to replace the visual cue of traditional physical fences (PF) and, if necessary, mild electric signals. The use of devices that provide electric signals leads to concerns regarding the welfare of virtually fenced animals. The objective of this review is to give an overview of the current state of VF research into the welfare and learning behavior of cattle. Therefore, a systematic literature search was conducted using two online databases and reference lists of relevant articles. Studies included were peer-reviewed and written in English, used beef or dairy cattle, and tested neck-mounted VF devices. Further inclusion criteria were a combination of audio and electrical signals and a setup as a pasture trial, which implied that animals grazed in groups on grassland for 4 h minimum while at least one fence side was virtually fenced. The eligible studies (n = 13) were assigned to one or two of the following categories: animal welfare (n studies = 8) or learning behavior (n studies = 9). As data availability for conducting a meta-analysis was not sufficient, a comparison of the means of welfare indicators (daily weight gain, daily lying time, steps per hour, daily number of lying bouts, and fecal cortisol metabolites [FCM]) for virtually and physically fenced animals was done instead. In an additional qualitative approach, the results from the welfare-related studies were assembled and discussed. For the learning behavior, the number of acoustic and electric signals and their ratio were used in a linear regression model with duration in days as a numeric predictor to assess the learning trends over time. There were no significant differences between VF and PF for most welfare indicators (except FCM with lower values for VF; P = 0.0165). The duration in days did not have a significant effect on the number of acoustic and electric signals. However, a significant effect of trial duration on the ratio of electric-to-acoustic signals (P = 0.0014) could be detected, resulting in a decreasing trend of the ratio over time, which suggests successful learning. Overall, we conclude that the VF research done so far is promising but is not yet sufficient to ensure that the technology could not have impacts on the welfare of certain cattle types. More research is necessary to investigate especially possible long-term effects of VF.


Virtual fencing is a GPS-enabled fencing technology with the potential for improved livestock and pasture management, as well as socioeconomic and environmental benefits. However, the missing visual cue of a physical fence and the use of electric signals to ensure animals stay within the invisible boundary raise ethical and animal welfare concerns regarding the animal's ability to understand and learn the technology and the stress and anxiety associated with these processes. In this review, data from studies investigating the welfare and learning behaviors of virtually fenced animals were collected and analyzed to give an overview of this research field. It shows that the welfare of cattle in extensive systems is not adversely affected by the virtual fencing system, and the animals learn to avoid the electric signals. However, more research is necessary, especially over longer periods of time and with cows in intensive grazing systems, to ensure the welfare of virtually fenced cattle.


Asunto(s)
Crianza de Animales Domésticos , Bienestar del Animal , Animales , Bovinos/fisiología , Crianza de Animales Domésticos/métodos , Conducta Animal , Aprendizaje
2.
Psychol Res ; 82(5): 896-914, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28612080

RESUMEN

Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.


Asunto(s)
Percepción de Color/fisiología , Emociones/fisiología , Adulto , Nivel de Alerta/fisiología , Femenino , Respuesta Galvánica de la Piel/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...