Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35456635

RESUMEN

Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on "Understanding Gastrointestinal Absorption-related Processes (UNGAP)" was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.

2.
Drug Deliv Transl Res ; 12(6): 1355-1375, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34382178

RESUMEN

The delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas In Vitro , Inyecciones Intravítreas , Preparaciones Farmacéuticas , Solubilidad
3.
Eur J Pharm Sci ; 172: 106100, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936937

RESUMEN

This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.


Asunto(s)
COVID-19 , Tracto Gastrointestinal , Administración Oral , Simulación por Computador , Absorción Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Humanos , Absorción Intestinal , Masculino , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Solubilidad
4.
Adv Drug Deliv Rev ; 171: 289-331, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610694

RESUMEN

Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Absorción Intestinal , Administración Oral , Animales , Simulación por Computador , Composición de Medicamentos , Interacciones Alimento-Droga , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo
5.
Drug Deliv Transl Res ; 11(1): 318-327, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32578045

RESUMEN

A drug delivery technology comprising a mucoadhesive bilayered buccally anchored tablet containing natamycin was developed. The concept was to anchor the tablet to the buccal tissue and allow controlled release of the drug through the matrix into the mouth. Carbomer (Carbopol ® 974 P NF) was used to formulate the mucoadhesive layer. Hydroxypropyl methylcellulose (HPMC) (Methocel® K4M) at 10, 15, 20, and 40% w/w was used for the drug-containing layer. Natamycin, an amphoteric macrolide antifungal agent, was incorporated into the formulations. In addition, tablets containing erythrosine as a marker were prepared in order to examine the distribution and retention of the dye in the oral cavity. As expected, the in vitro analysis showed that the concentration of natamycin released decreased with the increasing proportion of HPMC in the formulation. A small volunteer study was conducted using the tablets containing 10% and 20% HPMC to quantitate the patterns of distribution of the drug released into the oral cavity (upper right buccal vestibule, lower right and left buccal vestibules, and sublingual region). The mucoadhesive bilayered buccal tablet formulation provided a unidirectional release of the drug from the tablet into the oral cavity in a prolonged release fashion, maintaining drug concentration above the MIC value (2 µg/mL) for Candida albicans. The amount of the drug in the sublingual region was found to be lowest when compared with other regions, which is due to the higher flow of saliva in this region. Graphical abstract.


Asunto(s)
Antifúngicos , Mucosa Bucal , Adhesividad , Humanos , Boca , Comprimidos
6.
Eur J Pharm Biopharm ; 150: 14-23, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32035969

RESUMEN

It is widely recognised that drug solubility within the gastrointestinal tract (GIT) differs from values determined in a simple aqueous buffer and to circumvent this problem measurement in biorelevant fluids is determined. Biorelevant fluids are complex mixtures of components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pancreatin and sodium oleate) at various concentrations and pH levels to provide systems simulating fasted (FaSSIF) or fed (FeSSIF) intestinal media. Design of Experiment (DoE) studies have been applied to investigate FaSSIF and FeSSIF and indicate that a drug's equilibrium solubility varies over orders of magnitude, is influenced by the drug type and individual or combinations of media components, with some of these interactions being drug specific. Although providing great detail on the drug media interactions these studies are resource intensive requiring up to ninety individual experiments for FeSSIF. In this paper a low sample number or reduced DoE system has been investigated by restricting components with minimal solubility impact to a single value and only investigating variations in the concentrations of sodium taurocholate, lecithin, sodium oleate, pH and additionally in the case of fed media, monoglyceride. This reduces the experiments required to ten (FaSSIF) and nine (FeSSIF). Twelve poorly soluble drugs (Ibuprofen, Valsartan, Zafirlukast, Indomethacin, Fenofibrate, Felodipine, Probucol, Tadalafil, Carvedilol, Aprepitant, Bromocriptine and Itraconazole) were investigated and the results compared to published DoE studies and literature solubility values in human intestinal fluid (HIF), FaSSIF or FeSSIF. The solubility range determined by the reduced DoE is statistically equivalent to the larger scale published DoE results in over eighty five percent of the cases. The reduced DoE range also covers HIF, FaSSIF or FeSSIF literature solubility values. In addition the reduced DoE provides lowest measured solubility values that agree with the published DoE values in ninety percent of the cases. However, the reduced DoE only identified single and in some cases none of the major components influencing solubility in contrast to the larger published DoE studies which identified multiple individual components and component interactions. The identification of significant components within the reduced DoE was also dependent upon the drug and system under investigation. The study demonstrates that the lower experimental number reduces statistical power of the DoE to resolve the impact of media components on solubility. However, in a situation where only the solubility range is required the reduced DoE can provide the desired information, which will be of benefit during in vitro development studies. Further refinements are possible to extend the reduced DoE protocol to improve biorelevance and application into areas such as PBPK modelling.


Asunto(s)
Ayuno , Secreciones Intestinales/química , Preparaciones Farmacéuticas/química , Periodo Posprandial , Administración Oral , Animales , Humanos , Concentración de Iones de Hidrógeno , Modelos Químicos , Preparaciones Farmacéuticas/administración & dosificación , Solubilidad
7.
J Ocul Pharmacol Ther ; 35(8): 457-465, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31259643

RESUMEN

Ocular drug delivery offers unique challenges and opportunities in the era of novel therapeutic agents ranging from small molecules to gene therapies. Noninvasive delivery of drugs into the back of the eye or any part of the eye is extremely limited by short precorneal residence time and formidable biological barriers. The eye is a sensitive, sensory organ that requires a high level of material and procedural safety, while achieving therapeutic efficacy. Some recent advances and unmet needs for ocular drug delivery and disposition are discussed in this article. Specifically, nanomedicines, physical and chemical means to enhance delivery, stimuli-responsive delivery systems, the role of vitreal binding on ocular pharmacokinetics, and the influence of aging eye on drug delivery, and the associated unmet needs are highlighted. Additionally, the unmet needs in the medication management for the elderly patients with eye diseases are discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Oftalmopatías/tratamiento farmacológico , Administración Oftálmica , Envejecimiento/metabolismo , Animales , Portadores de Fármacos/química , Oftalmopatías/metabolismo , Humanos , Nanotecnología , Medicina de Precisión , Distribución Tisular , Cuerpo Vítreo/metabolismo
8.
Eur J Pharm Sci ; 134: 153-175, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991092

RESUMEN

Oral administration is the most common route of drug delivery. The absorption of a drug from the gut into the bloodstream involves disintegration of the solid dosage form, dissolution of the active pharmaceutical ingredient and its transport across the gut wall. The efficiency of these processes is determined by highly complex and dynamic interplay between the gastrointestinal tract, the dosage form and the API. The European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) aims to improve our understanding of intestinal drug absorption by creating a multidisciplinary Network of researchers from academia and industry engaging in scientific discussions. As part of the basis for the UNGAP project, this review aims to summarize the current knowledge on anatomy and physiology of the human gastrointestinal tract with emphasis on human studies for the evaluation of the regional drug absorption and the prediction of oral dosage form performance. A range of factors and methods will be considered, including imaging methods, intraluminal sampling and, models for predicting segmental/regional absorption. In addition, in vitro and in silico methods to evaluate regional drug absorption will be discussed. This will provide the basis for further work on improving predictions for the in vivo behavior of drug products in the gastrointestinal tract.


Asunto(s)
Absorción Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Administración Oral , Adulto , Química Farmacéutica , Simulación por Computador , Sistemas de Liberación de Medicamentos , Humanos , Absorción Intestinal
9.
Mol Pharm ; 16(5): 1890-1905, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30848917

RESUMEN

Oral administration of a solid dosage form requires drug dissolution in the gastrointestinal tract before absorption. Solubility is a key factor controlling dissolution, and it is recognized that, within the intestinal tract, this is influenced by the luminal fluid pH, amphiphile content, and composition. Various simulated intestinal fluid recipes have been introduced to mimic this behavior and studied using a range of different experimental techniques. In this article, we have measured equilibrium solubility utilizing a novel four component mixture design (4CMD) with biorelevant amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) within a matrix of three pH values (5, 6, and 7) and total amphiphile concentrations (11.7, 30.6, and 77.5 mM) to provide a topographical and statistical overview. Three poorly soluble drugs representing acidic (indomethacin), basic (carvedilol), and neutral (fenofibrate) categories have been studied. The macroscopic solubility behavior agrees with literature and exhibits an overall increasing solubility from low pH and total amphiphile concentration to high pH and total amphiphile concentration. Within the matrix, all three drugs display different topographies, which can be related to the statistical effect levels of the individual amphiphiles or amphiphile interactions on solubility. The study also identifies previously unreported three and four way factor interactions notably between bile salt, phospholipid, pH, and total amphiphile concentration. In addition, the results also reveal that solubility variability is linked to the number of amphiphiles and the respective ratios in the measurement fluid, with the minimum variation present in systems containing all four amphiphiles. The individual 4CMD experiments within the matrix can be linked to provide a possible intestinal solubility window for each drug that could be applied in PBPK modeling systems. Overall the approach provides a novel overview of intestinal solubility topography along with greater detail on the impact of the various factors studied; however, each matrix requires 351 individual solubility measurements. Further studies will be required to refine the experimental protocol in order the maximize information garnered while minimizing the number of measurements required.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Líquidos Corporales/química , Química Farmacéutica/métodos , Liberación de Fármacos/fisiología , Secreciones Intestinales/química , Modelos Biológicos , Administración Oral , Ácidos y Sales Biliares/química , Carvedilol/química , Formas de Dosificación , Fenofibrato/química , Humanos , Concentración de Iones de Hidrógeno , Indometacina/química , Absorción Intestinal/fisiología , Monoglicéridos/química , Concentración Osmolar , Fosfolípidos/química , Solubilidad , Tensoactivos/química
10.
Materials (Basel) ; 12(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682805

RESUMEN

The evaluation of biological responses to polymeric scaffolds are important, given that the ideal scaffold should be biocompatible, biodegradable, promote cell adhesion and aid cell proliferation. The primary goal of this research was to measure the biological responses of cells against various polymeric and collagen electrospun scaffolds (polycaprolactone (PCL) and polylactic acid (PLA) polymers: PCL⁻drug, PCL⁻collagen⁻drug, PLA⁻drug and PLA⁻collagen⁻drug); cell proliferation was measured with a cell adhesion assay and cell viability using 5-bromo-2'-deoxyuridine (BrdU) and resazurin assays. The results demonstrated that there is a distinct lack of growth of cells against any irgasan (IRG) loaded scaffolds and far greater adhesion of cells against levofloxacin (LEVO) loaded scaffolds. Fourteen-day studies revealed a significant increase in cell growth after a 7-day period. The addition of collagen in the formulations did not promote greater cell adhesion. Cell viability studies revealed the levels of IRG used in scaffolds were toxic to cells, with the concentration used 475 times higher than the EC50 value for IRG. It was concluded that the negatively charged carboxylic acid group found in LEVO is attracting positively charged fibronectin, which in turn is attracting the cell to adhere to the adsorbed proteins on the surface of the scaffold. Overall, the biological studies examined in this paper are valuable as preliminary data for potential further studies into more complex aspects of cell behaviour with polymeric scaffolds.

11.
Pharm Res ; 35(12): 248, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397820

RESUMEN

Silk is a remarkable biopolymer with a long history of medical use. Silk fabrications have a robust track record for load-bearing applications, including surgical threads and meshes, which are clinically approved for use in humans. The progression of top-down and bottom-up engineering approaches using silk as the basis of a drug delivery or cell-loaded matrix helped to re-ignite interest in this ancient material. This review comprehensively summarises the current applications of silk for tissue engineering and drug delivery, with specific reference to the eye. Additionally, the review also covers emerging trends for the use of silk as a biologically active biopolymer for the treatment of eye disorders. The review concludes with future capabilities of silk to contribute to advanced, electronically-enhanced ocular drug delivery concepts.


Asunto(s)
Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Oftalmopatías/terapia , Seda/química , Ingeniería de Tejidos/métodos , Animales , Humanos , Cicatrización de Heridas
12.
Eur J Pharm Sci ; 111: 247-256, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987539

RESUMEN

Upon oral administration the solubility of a drug in intestinal fluid is a key property influencing bioavailability. It is also recognised that simple aqueous solubility does not reflect intestinal solubility and to optimise in vitro investigations simulated intestinal media systems have been developed. Simulated intestinal media which can mimic either the fasted or fed state consists of multiple components each of which either singly or in combination may influence drug solubility, a property that can be investigated by a statistical design of experiment technique. In this study a design of experiment covering the full range from the lower limit of fasted to the upper limit of fed parameters and using a small number of experiments has been performed. The measured equilibrium solubility values are comparable with literature values for simulated fasted and fed intestinal fluids as well as human fasted and fed intestinal fluids. The equilibrium solubility data range is statistically equivalent to a combination of published fasted and fed design of experiment data in six (indomethacin, phenytoin, zafirlukast, carvedilol, fenofibrate and probucol) drugs with three (aprepitant, tadalafil and felodipine) drugs not equivalent. In addition the measured equilibrium solubility data sets were not normally distributed. Further studies will be required to determine the reasons for these results however it implies that a single solubility measurement without knowledge of the solubility distribution will be of limited value. The statistically significant media factors which promote equilibrium solubility (pH, sodium oleate and bile salt) were in agreement with published results but the number of determined significant factors and factor interactions was fewer in this study, lecithin for example did not influence solubility. This may be due to the reduction in statistical sensitivity from the lower number of experimental data points or the fact that using the full range will examine media parameters ratios that are not biorelevant. Overall the approach will provide an estimate of the solubility range and the most important media factors but will not be equivalent to larger scale focussed studies. Further investigations will be required to determine why some drugs do not produce equivalent DoE solubility distributions, for example combined fasted and fed DoE, but this simply may be due to the complexity and individuality of the interactions between a drug and the media components.


Asunto(s)
Ayuno , Secreciones Intestinales/química , Intestinos/fisiología , Modelos Biológicos , Preparaciones Farmacéuticas , Administración Oral , Ácidos y Sales Biliares , Humanos , Solubilidad
13.
Mol Pharm ; 14(12): 4170-4180, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29072917

RESUMEN

The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A prerequisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances, such as phospholipid, bile salt, monoglyceride, and cholesterol. To aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviors are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug's behavior in gastrointestinal fluids.


Asunto(s)
Líquidos Corporales/química , Técnicas In Vitro/métodos , Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/química , Administración Oral , Líquidos Corporales/fisiología , Ayuno/fisiología , Estudios de Factibilidad , Humanos , Concentración de Iones de Hidrógeno , Intestinos/química , Intestinos/fisiología , Preparaciones Farmacéuticas/administración & dosificación , Solubilidad
14.
Int J Pharm ; 531(1): 67-79, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28807566

RESUMEN

For the creation of scaffolds in tissue engineering applications, it is essential to control the physical morphology of fibres and to choose compositions which do not disturb normal physiological function. Collagen, the most abundant protein in the human body, is a well-established biopolymer used in electrospinning compositions. It shows high in-vivo stability and is able to maintain a high biomechanical strength over time. In this study, the effects of collagen type I in polylactic acid-drug electrospun scaffolds for tissue engineering applications are examined. The samples produced were subsequently characterised using a range of techniques. Scanning electron microscopy analysis shows that the fibre morphologies varied across PLA-drug and PLA-collagen-drug samples - the addition of collagen caused a decrease in average fibre diameter by nearly half, and produced nanofibres. Atomic force microscopy imaging revealed collagen-banding patterns which show the successful integration of collagen with PLA. Solid-state characterisation suggested a chemical interaction between PLA and drug compounds, irgasan and levofloxacin, and the collagen increased the amorphous regions within the samples. Surface energy analysis of drug powders showed a higher dispersive surface energy of levofloxacin compared with irgasan, and contact angle goniometry showed an increase in hydrophobicity in PLA-collagen-drug samples. The antibacterial studies showed a high efficacy of resistance against the growth of both E. coli and S. Aureus, except with PLA-collagen-LEVO which showed a regrowth of bacteria after 48h. This can be attributed to the low drug release percentage incorporated into the nanofibre during the in vitro release study. However, the studies did show that collagen helped shift both drugs into sustained release behaviour. These ideal modifications to electrospun scaffolds may prove useful in further research regarding the acceptance of human tissue by inhibiting the potential for bacterial infection.


Asunto(s)
Antibacterianos/administración & dosificación , Colágeno/química , Nanofibras/química , Ingeniería de Tejidos , Preparaciones de Acción Retardada , Liberación de Fármacos , Escherichia coli , Humanos , Staphylococcus aureus , Andamios del Tejido
15.
Mol Pharm ; 14(12): 4132-4144, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28749696

RESUMEN

The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug-micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior.


Asunto(s)
Líquidos Corporales/fisiología , Liberación de Fármacos/fisiología , Absorción Intestinal/fisiología , Intestinos/fisiología , Tensoactivos , Variación Biológica Poblacional , Biofarmacia , Líquidos Corporales/química , Química Farmacéutica , Humanos , Concentración de Iones de Hidrógeno , Micelas , Modelos Biológicos , Solubilidad
16.
Int J Pharm ; 517(1-2): 329-337, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27988377

RESUMEN

The chemical distribution and mechanical effects of drug compounds in loaded electrospun scaffolds, a potential material for hernia repair mesh, were characterised and the efficacy of the material was evaluated. Polycaprolactone electrospun fibres were loaded with either the antibacterial agent, irgasan, or the broad-spectrum antibiotic, levofloxacin. The samples were subsequently characterised by rheological studies, scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle goniometry (CAG), in vitro drug release studies, antibacterial studies and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Increased linear viscoelastic regions observed in the rheometry studies suggest that both irgasan and levofloxacin alter the internal structure of the native polymeric matrix. In vitro drug release studies from the loaded polymeric matrix showed significant differences in release rates for the two drug compounds under investigation. Irgasan showed sustained release, most likely driven by molecular diffusion through the scaffold. Conversely, levofloxacin exhibited a burst release profile indicative of phase separation at the edge of the fibres. Two scaffold types successfully inhibited bacterial growth when tested with strains of E. coli and S. aureus. Electrospinning drug-loaded polyester fibres is an alternative, feasible and effective method for fabricating non-woven fibrous meshes for controlled release in hernia repair.


Asunto(s)
Carbanilidas/farmacología , Carbanilidas/farmacocinética , Levofloxacino/farmacología , Levofloxacino/farmacocinética , Nanofibras/química , Poliésteres/química , Carbanilidas/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Herniorrafia/métodos , Levofloxacino/química , Pruebas de Sensibilidad Microbiana , Nanofibras/ultraestructura , Reología
17.
Eur J Pharm Sci ; 99: 95-104, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940083

RESUMEN

Gastrointestinal fluid is a complex milieu and it is recognised that gut drug solubility is different to that observed in simple aqueous buffers. Simulated gastrointestinal media have been developed covering fasted and fed states to facilitate in vitro prediction of gut solubility and product dissolution. However, the combination of bile salts, phospholipids, fatty acids and proteins in an aqueous buffered system creates multiple phases and drug solubility is therefore a complex interaction between these components, which may create unique environments for each API. The impact on solubility can be assessed through a statistical design of experiment (DoE) approach, to determine the influence and relationships between factors. In this paper DoE has been applied to fed simulated gastrointestinal media consisting of eight components (pH, bile salt, lecithin, sodium oleate, monoglyceride, buffer, salt and pancreatin) using a two level D-optimal design with forty-four duplicate measurements and four centre points. The equilibrium solubility of a range of poorly soluble acidic (indomethacin, ibuprofen, phenytoin, valsartan, zafirlukast), basic (aprepitant, carvedilol, tadalafil, bromocriptine) and neutral (fenofibrate, felodipine, probucol, itraconazole) drugs was investigated. Results indicate that the DoE provides equilibrium solubility values that are comparable to literature results for other simulated fed gastrointestinal media systems or human intestinal fluid samples. For acidic drugs the influence of pH predominates but other significant factors related to oleate and bile salt or interactions between them are present. For basic drugs pH, oleate and bile salt have equal significance along with interactions between pH and oleate and lecithin and oleate. Neutral drugs show diverse effects of the media components particularly with regard to oleate, bile salt, pH and lecithin but the presence of monoglyceride, pancreatin and buffer have significant but smaller effects on solubility. There are fourteen significant interactions between factors mainly related to the surfactant components and pH, indicating that the solubility of neutral drugs in fed simulated media is complex. The results also indicate that the equilibrium solubility of each drug can exhibit individualistic behaviour associated with the drug's chemical structure, physicochemical properties and interaction with media components. The utility of DoE for fed simulated media has been demonstrated providing equilibrium solubility values comparable with similar in vitro systems whilst also providing greater information on the influence of media factors and their interactions. The determination of a drug's gastrointestinal solubility envelope provides useful limits that can potentially be applied to in silico modelling and in vivo experiments.


Asunto(s)
Mucosa Intestinal/metabolismo , Secreciones Intestinales/química , Preparaciones Farmacéuticas/química , Administración Oral , Ácidos y Sales Biliares/química , Tampones (Química) , Simulación por Computador , Ayuno , Concentración de Iones de Hidrógeno , Absorción Intestinal , Lecitinas/química , Modelos Biológicos , Ácido Oléico/química , Preparaciones Farmacéuticas/metabolismo , Solubilidad
18.
Int J Pharm ; 519(1-2): 79-97, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27915009

RESUMEN

Various gastrointestinal (GI) factors affect drug and formulation behavior after oral administration, including GI transfer, motility, pH and GI fluid volume and composition. An in-depth understanding of these physiological and anatomical variables is critical for a continued progress in oral drug development. In this review, different methodologies (invasive versus non-invasive) to explore the impact of physiological variables on formulation behavior in the human GI tract are presented, revealing their strengths and limitations. The techniques mentioned allow for an improved understanding of the role of following GI variables: gastric emptying (magnetic resonance imaging (MRI), scintigraphy, acetaminophen absorption technique, ultrasonography, breath test, intraluminal sampling and telemetry), motility (MRI, small intestinal/colonic manometry and telemetry), GI volume changes (MRI and ultrasonography), temperature (telemetry) and intraluminal pH (intraluminal sampling and telemetry).


Asunto(s)
Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/metabolismo , Administración Oral , Animales , Química Farmacéutica/métodos , Vaciamiento Gástrico/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos , Humanos
19.
Int J Pharm ; 514(1): 73-80, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27863685

RESUMEN

Gastrointestinal drug administration is the preferred route for the majority of drugs however, the natural physiology and physicochemistry of the gastrointestinal tract is critical to absorption but complex and influenced by factors such as diet or disease. The pharmaceutical sciences drive for product consistency has led to the development of in vitro product performance tests whose utility and interpretation is hindered by the complexity, variability and a lack of understanding. This article explores some of these issues with respect to the drug, formulation and the presence of surfactant excipients and how these interact with the natural bile salt surfactants. Interactions start in the mouth and during swallowing but the stomach and small intestine present the major challenges related to drug dissolution, solubility, the impact of surfactants and supersaturation along with precipitation. The behaviour of lipid based formulations and the influence of surfactant excipients is explored along with the difficulties of translating in vitro results to in vivo performance. Possible future research areas are highlighted with the conclusion that, "a great deal of work using modern methods is still required to clarify the situation".


Asunto(s)
Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Tensoactivos/química , Administración Oral , Animales , Química Farmacéutica/métodos , Excipientes/química , Humanos , Absorción Intestinal/efectos de los fármacos , Lípidos/química , Solubilidad
20.
J Drug Target ; 23(4): 305-10, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25582133

RESUMEN

A scalable platform to prepare multi-functional ocular lenses is demonstrated. Using rapidly dissolving polyvinylpyrrolidone (PVP) as the active stabilizing matrix, both sides of ocular lenses were coated using a modified scaled-up masking electrohydrodynamic atomization (EHDA) technique (flow rates variable between 5 and 10 µL/min, applied voltage 4-11 kV). Each side was coated (using a specially designed flip-able well) selectively with a pre-determined morphology and model drug substance. PVP nanoparticles (inner side, to be in contact with the cornea, mean size

Asunto(s)
Cloranfenicol/administración & dosificación , Sistemas de Liberación de Medicamentos , Lentes Intraoculares , Nanopartículas , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Química Farmacéutica/métodos , Cloranfenicol/farmacología , Excipientes/química , Tamaño de la Partícula , Polímeros/química , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...