Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Microbiol ; 121(3): 529-542, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38131156

RESUMEN

An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.


Asunto(s)
Malaria , Plasmodium falciparum , Animales , Masculino , Femenino , Fosfolipasas/genética , Mosquitos Vectores , Eritrocitos/parasitología
2.
Elife ; 122023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108809

RESUMEN

Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.


Asunto(s)
Apicoplastos , Ascomicetos , Malaria Falciparum , Humanos , Plasmodium falciparum , Microscopía , Placa Amiloide
3.
J Bacteriol ; 205(12): e0032023, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37991380

RESUMEN

IMPORTANCE: Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri.


Asunto(s)
Proteínas Bacterianas , Shigella flexneri , Humanos , Proteínas Bacterianas/metabolismo , Shigella flexneri/metabolismo , Ácidos Grasos/metabolismo , Lípidos
4.
Trends Parasitol ; 39(12): 1004-1013, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827961

RESUMEN

A critical part of the malaria parasite's life cycle is invasion of red blood cells (RBCs) by merozoites. Inside RBCs, the parasite forms a schizont, which undergoes segmentation to produce daughter merozoites. These cells are released, establishing cycles of invasion. Traditionally, merozoites are represented as nonmotile, egg-shaped cells that invade RBCs 'narrower end' first and pack within schizonts with this narrower end facing outwards. Here, we discuss recent evidence and re-evaluate previous data which suggest that merozoites are capable of motility and have spherical or elongated-teardrop shapes. Furthermore, merozoites invade RBCs 'wider end' first and pack within schizonts with this wider end facing outwards. We encourage the field to review this revised model and consider its implications for future studies.


Asunto(s)
Malaria , Parásitos , Animales , Malaria/parasitología , Esquizontes , Merozoítos , Estadios del Ciclo de Vida
6.
PLoS Biol ; 21(4): e3002066, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37053271

RESUMEN

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malaria Falciparum/genética , Eritrocitos/parasitología , Antimaláricos/farmacología
7.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36993606

RESUMEN

Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample ~4.5x. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three-dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have catalogued 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date, and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.

8.
Cell Mol Life Sci ; 80(3): 74, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847896

RESUMEN

Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a ß-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.


Asunto(s)
Eritrocitos , Malaria , Proteínas de la Membrana , Proteínas Protozoarias , Humanos , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria/genética , Malaria/metabolismo , Malaria/parasitología , Malaria/prevención & control , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
9.
mBio ; 14(1): e0331822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625655

RESUMEN

Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.


Asunto(s)
Malaria , Parásitos , Animales , Humanos , Parásitos/metabolismo , Proteínas Asociadas a Microtúbulos , Plasmodium falciparum/metabolismo , Plasmodium berghei , Esporozoítos , Proteínas Protozoarias/metabolismo
10.
Int J Parasitol ; 53(1): 27-41, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400305

RESUMEN

Plasmodium falciparum exerts strong temporal control of gene expression across its lifecycle. Proteins expressed exclusively during late schizogony of blood stages, for example, often have a role in facilitating merozoite invasion of the host red blood cell (RBC), through merozoite development, egress, invasion or early establishment of infection in the RBC. Here, we characterise P. falciparum C3H1 zinc finger 1 (PfCZIF1, Pf3D7_1468400) and P. falciparum C3H1 zinc finger 2 (PfCZIF2, Pf3D7_0818100) which we identified as the only C3H1-type zinc finger proteins with peak expression at schizogony. Previous studies reported that antibodies against PfCZIF1 inhibit merozoite invasion, suggesting this protein may have a potential role during RBC invasion. We show using C-terminal truncations and gene knockouts of each of Pfczif1 and Pfczif2 that neither are essential for blood stage growth. However, they could not both be knocked out simultaneously, suggesting that at least one is needed for parasite growth in vitro. Immunofluorescence localisation of PfCZIF1 and PfCZIF2 indicated that both proteins occur in discrete foci on the periphery of the parasite's cytosol and biochemical assays suggest they are peripherally associated to a membrane. Transcriptomic analyses for the C-terminal truncation mutants reveal no significant expression perturbations with PfCZIF1 truncation. However, modification of PfCZIF2 appears to modify the expression for some exported proteins including PfKAHRP. This study does not support a role for PfCZIF1 or PfCZIF2 in merozoite invasion of the RBC and suggests that these proteins may help regulate the expression of proteins exported into the RBC cytosol after merozoite invasion.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Humanos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Merozoítos/metabolismo , Proteínas de la Membrana/genética , Eritrocitos/parasitología
11.
Front Cell Infect Microbiol ; 12: 1063407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530422

RESUMEN

Introduction: The spread of artemisinin resistant Plasmodium falciparum parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites via two mechanisms: 'delayed death' by inhibiting the bacterium-like ribosomes of the apicoplast, and 'quick-killing' that kills rapidly across the entire blood stage development. Methods: Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against P. falciparum (the most virulent human malaria) and P. knowlesi (a monkey parasite that frequently infects humans). Results: Seventeen analogues showed improved quick-killing against both Plasmodium species, with up to 38 to 20-fold higher potency over azithromycin after less than 48 or 28 hours of treatment for P. falciparum and P. knowlesi, respectively. Quick-killing analogues maintained activity throughout the blood stage lifecycle, including ring stages of P. falciparum parasites (<12 hrs treatment) and were >5-fold more selective against P. falciparum than human cells. Isopentenyl pyrophosphate supplemented parasites that lacked an apicoplast were equally sensitive to quick-killing analogues, confirming that the quick killing activity of these drugs was not directed at the apicoplast. Further, activity against the related apicoplast containing parasite Toxoplasma gondii and the gram-positive bacterium Streptococcus pneumoniae did not show improvement over azithromycin, highlighting the specific improvement in antimalarial quick-killing activity. Metabolomic profiling of parasites subjected to the most potent compound showed a build-up of non-haemoglobin derived peptides that was similar to chloroquine, while also exhibiting accumulation of haemoglobin-derived peptides that was absent for chloroquine treatment. Discussion: The azithromycin analogues characterised in this study expand the structural diversity over previously reported quick-killing compounds and provide new starting points to develop azithromycin analogues with quick-killing antimalarial activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Antimaláricos/farmacología , Azitromicina/farmacología , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología
12.
J Biol Chem ; 298(9): 102360, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35961464

RESUMEN

Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3ß, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3ß does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3ß during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3ß-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Eritrocitos/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Humanos , Ligandos , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
13.
mBio ; 13(2): e0062322, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404116

RESUMEN

Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.


Asunto(s)
Malaria Falciparum , Parásitos , Plasmodium , Animales , Membrana Celular/metabolismo , Humanos , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Parásitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
14.
Commun Biol ; 5(1): 121, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140336

RESUMEN

Merozoite invasion of host red blood cells (RBCs) is essential for survival of the human malaria parasite Plasmodium falciparum. Proteins involved with RBC binding and invasion are secreted from dual-club shaped organelles at the apical tip of the merozoite called the rhoptries. Here we characterise P. falciparum Cytosolically Exposed Rhoptry Leaflet Interacting protein 2 (PfCERLI2), as a rhoptry bulb protein that is essential for merozoite invasion. Phylogenetic analyses show that cerli2 arose through an ancestral gene duplication of cerli1. We show that PfCERLI2 is essential for blood-stage growth and localises to the cytosolic face of the rhoptry bulb. Inducible knockdown of PfCERLI2 led to a proportion of merozoites failing to invade and was associated with elongation of the rhoptry organelle during merozoite development and inhibition of rhoptry antigen processing. These findings identify PfCERLI2 as a protein that has key roles in rhoptry biology during merozoite invasion.


Asunto(s)
Malaria , Parásitos , Animales , Eritrocitos/parasitología , Humanos , Parásitos/metabolismo , Filogenia , Proteínas Protozoarias/metabolismo
15.
Cell Rep Med ; 2(10): 100423, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693368

RESUMEN

Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.


Asunto(s)
Antimaláricos/uso terapéutico , Reposicionamiento de Medicamentos , Malaria/tratamiento farmacológico , Humanos
16.
Bioorg Chem ; 117: 105359, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34689083

RESUMEN

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Asunto(s)
Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Quinazolinas/química , Quinazolinas/farmacología , Aminación , Compuestos de Anilina/uso terapéutico , Animales , Antimaláricos/uso terapéutico , Femenino , Humanos , Malaria/parasitología , Ratones , Plasmodium/fisiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Quinazolinas/uso terapéutico
17.
Bioorg Chem ; 115: 105244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34452759

RESUMEN

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Purinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
18.
Trends Parasitol ; 37(7): 638-650, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33941492

RESUMEN

Parasites of the genus Plasmodium cause human and animal malaria, leading to significant health and economic impacts. A key aspect of the complex life cycle of Plasmodium parasites is the invasion of the parasite into its host cell, which is mediated by secretory organelles. The largest of these organelles, the rhoptry, undergoes rapid and profound physiological changes when it secretes its contents during merozoite and sporozoite invasion of the host erythrocyte and hepatocyte, respectively. Here we discuss recent advancements in our understanding of the dynamic rhoptry biology during the parasite's invasive stages, with a focus on the roles of cytosolically exposed rhoptry-interacting proteins (C-RIPs). We explore potential similarities between the molecular mechanisms driving merozoite and sporozoite rhoptry function.


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Plasmodium/fisiología , Proteínas Protozoarias/metabolismo , Interacciones Huésped-Patógeno , Plasmodium/patogenicidad
19.
J Antimicrob Chemother ; 76(8): 1955-1961, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33956974

RESUMEN

Macrolide antibiotics are categorized by the WHO as Highest Priority, Critically Important Antimicrobials due to their recommendation as treatment for severe cases of campylobacteriosis in humans; a self-limiting, rarely life-threatening, zoonotic foodborne infection. Low rates of macrolide resistance in Campylobacter jejuni and the availability of alternative treatments have prompted some regulatory schemes to assign macrolides to a lower importance category. Apart from rare, specific infections, macrolides largely play a supportive role to other drug classes in human medicine. By contrast, although the advent of alternative control methods has seen significant reductions in macrolide use in intensive livestock, they still have a crucial role in the treatment/control of respiratory infections and liver abscesses in cattle. Whilst acknowledging that ongoing surveillance is required to reduce the spread of recently emerged, transferable macrolide resistance among Campylobacter, this article recommends that macrolides should be moved to the WHO Highly Important category.


Asunto(s)
Antiinfecciosos , Infecciones por Campylobacter , Campylobacter jejuni , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/veterinaria , Bovinos , Farmacorresistencia Bacteriana , Humanos , Macrólidos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Organización Mundial de la Salud
20.
Eur J Med Chem ; 214: 113253, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33610028

RESUMEN

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Células Hep G2 , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Piperazinas/síntesis química , Piperazinas/química , Solubilidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...