Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 80(5): 744-752, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27508897

RESUMEN

BACKGROUND: Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. METHODS: Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to induce a chronic infection for 5 d. On d 5, pancreatic-substrate clamps were performed to attain fasting or fed insulin levels but to maintain glucose and amino acids in the fasting range. Total fractional protein synthesis rates (Ks), translational control mechanisms, and energy sensing and degradation signal activation were measured in longissimus dorsi muscle. RESULTS: In fasting conditions, CLP reduced Ks and sirtuin 1 (SIRT1) and increased AMP-activated protein kinase α (AMPKα) activation and muscle RING-finger protein-1 (MuRF1). Insulin treatment increased Ks and mitochondrial protein synthesis, enhanced translation activation, and reduced SIRT1 in CON. In contrast, in CLP, insulin treatment increased Ks, protein kinase B (PKB) and Forkhead box O1 phosphorylation, antagonized AMPK activation, and decreased peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), MuRF1, and SIRT1. CONCLUSION: Energy and substrate sensing in skeletal muscle by the PKB-AMPK-SIRT1-PGC-1α axis is impacted by chronic infection in neonatal pigs and can be modulated by insulin.


Asunto(s)
Insulina/metabolismo , Músculo Esquelético/metabolismo , Peritonitis/fisiopatología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Animales Recién Nacidos , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Resistencia a la Insulina , Leucina/metabolismo , Peritonitis/metabolismo , Fosforilación , Transducción de Señal , Sirtuina 1/metabolismo , Sus scrofa , Porcinos , Factores de Transcripción/metabolismo
2.
Am J Physiol Endocrinol Metab ; 302(12): E1531-40, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22454289

RESUMEN

Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.


Asunto(s)
Dieta , Homocisteína/metabolismo , Metionina/metabolismo , Metilación , Animales , Colina/metabolismo , Colina/farmacología , Cisteína/metabolismo , Femenino , Feto/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Cinética , Tamaño de la Camada , Hígado/metabolismo , Metionina/análogos & derivados , Metionina/farmacología , Páncreas/metabolismo , Fosforilcolina/metabolismo , Placenta/metabolismo , Embarazo , Ratas , Triglicéridos/metabolismo , Aumento de Peso/efectos de los fármacos
3.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R682-90, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22277935

RESUMEN

Accretion rates of muscle protein are elevated in normal neonates, but this anabolic drive decreases with maturation. As this change occurs, it is not known whether development also influences muscle protein catabolism induced by sepsis. We hypothesize that protein degradation in skeletal muscle induced by endotoxemia becomes more severe as the neonate develops. Fasted 7- and 26-day-old pigs were infused for 8 h with LPS (0 and 10 µg·kg(-1)·h(-1)), while plasma amino acids (AA), 3-methylhistidine (3-MH), and α-actin concentrations and muscle protein degradation signal activation were determined (n = 5-7/group/age). Plasma full-length α-actin was greater in 7- than 26-day-old pigs, suggesting a higher baseline protein turnover in neonatal pigs. LPS increased plasma total AA, 3-MH, and full-length and cleaved α-actin in 26- than in 7-day-old pigs. In muscle of both age groups, LPS increased AMPK and NF-κB phosphorylation, the abundances of activated caspase 3 and E-3 ligases MuRF1 and atrogin1, as well as the abundance of cleaved α-actin, suggesting activation of muscle proteolysis by endotoxin in muscle. LPS decreased Forkhead box 01 (Fox01) and Fox04 phosphorylation and increased procaspase 3 abundance in muscle of 26-day-old pigs despite the lack of effect of LPS on PKB phosphorylation. The results suggest that skeletal muscle in healthy neonatal pigs maintains high baseline degradation signal activation that cannot be enhanced by endotoxin, but as maturation advances, the effect of LPS on muscle protein catabolism manifests its severity.


Asunto(s)
Animales Recién Nacidos/metabolismo , Endotoxemia/metabolismo , Infecciones por Escherichia coli/metabolismo , Metabolismo/fisiología , Músculo Esquelético/metabolismo , Índice de Severidad de la Enfermedad , Porcinos/crecimiento & desarrollo , Quinasas de la Proteína-Quinasa Activada por el AMP , Actinas/sangre , Aminoácidos/sangre , Animales , Animales Recién Nacidos/microbiología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Endotoxemia/fisiopatología , Endotoxinas/farmacología , Infecciones por Escherichia coli/fisiopatología , Insulina/sangre , Metabolismo/efectos de los fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos/metabolismo
4.
J Nutr ; 141(12): 2152-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22013195

RESUMEN

Orogastric tube feeding, using either continuous or intermittent bolus delivery, is common in infants for whom normal feeding is contraindicated. To compare the impact of different feeding strategies on muscle protein synthesis, after withholding food overnight, neonatal pigs received a complete formula orally as a bolus feed every 4 h or were continuously fed. Protein synthesis rate and translational mechanisms in skeletal muscle were examined after 0, 24, and 25.5 h. Plasma amino acid and insulin concentrations increased minimally and remained constant in continuously fed compared to feed-deprived pigs; however, the pulsatile meal feeding pattern was mimicked in bolus-fed pigs. Muscle protein synthesis was stimulated by feeding and the greatest response occurred after a bolus meal. Bolus but not continuous feeds increased polysome aggregation, the phosphorylation of protein kinase B, tuberous sclerosis complex 2, proline-rich Akt substrate of 40 kDa, eukaryotic initiation factor (eIF) 4E binding protein (4EBP1), and rp S6 kinase and enhanced dissociation of the 4EBP1 ·eIF4E complex and formation of the eIF4E ·eIF4G complex compared to feed deprivation (P < 0.05). Activation of insulin receptor substrate-1, regulatory associated protein of mammalian target of rapamycin, AMP-activated protein kinase, eukaryotic elongation factor 2, and eIF2α phosphorylation were unaffected by either feeding modality. These results suggest that in neonates, intermittent bolus feeding enhances muscle protein synthesis to a greater extent than continuous feeding by eliciting a pulsatile pattern of amino acid- and insulin-induced translation initiation.


Asunto(s)
Animales Recién Nacidos/genética , Dieta , Proteínas Musculares/biosíntesis , Músculo Esquelético/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos/sangre , Animales , Glucemia/análisis , Nutrición Enteral/métodos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Femenino , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Embarazo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Porcinos , Serina-Treonina Quinasas TOR/metabolismo
5.
Pediatr Res ; 70(3): 253-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21654549

RESUMEN

Protein synthesis (PS) increases after a meal in neonates, but the time course of the changes in PS in different tissues after a meal is unknown. We aimed to evaluate the changes in tissue PS, mammalian target of rapamycin complex 1 (mTORC1) activation, and proportion of ribosomal protein (rp) mRNAs in polysomes over 4 h after a bolus meal in neonatal pigs (n = 6/group; 5- to 7-d-old). The results show a more sustained increase in PS in glycolytic compared with mixed fiber type muscles and no changes in oxidative muscles. PS increased in liver, jejunum, and pancreas but not in kidney and heart. Feeding did not affect AMP-activated protein kinase or RAS-related GTP binding B activation. Phosphorylation of tuberous sclerosis complex 2, proline-rich Akt substrate of 40 kD, mTOR, eukaryotic initiation factor 4E binding protein, and rp S6 kinase 1 increased in all tissues after feeding. The proportion of mRNAs encoding rp S4 and S8 in liver polysomes increased within 30 min postfeeding. These results suggest that feeding stimulates mTORC1 signaling in muscle and viscera, but mTORC1 activation alone is not sufficient to stimulate PS in all tissues.


Asunto(s)
Ingestión de Alimentos/fisiología , Músculo Esquelético/fisiología , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Vísceras/fisiología , Animales , Animales Recién Nacidos , Activación Enzimática , Músculo Esquelético/anatomía & histología , Polirribosomas/metabolismo , Distribución Aleatoria , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/genética , Vísceras/anatomía & histología
6.
Pediatr Res ; 69(6): 473-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21364490

RESUMEN

In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been described. Pigs at 7 and 26 d of age were infused for 8 h with lipopolysaccharide (LPS, endotoxin, 0 and 10 µg · kg⁻¹ · h⁻¹). Fractional MPS rates and translation eukaryotic initiation factor (eIF) activation in muscle were examined (n = 5-7/group). The LPS-induced decrease in MPS was associated with reduced ribosomal and translational efficiency, whereas the age-induced decrease in MPS occurred by decreasing ribosome number. Abundances of mammalian target of rapamycin (mTOR) and S6 decreased, and that of the repressor eIF4E · 4E-binding protein 1 (4EBP1) association increased in 26-d-old pigs--compared with 7-d-old pigs. LPS decreased the abundance of the active eIF4E ·eIF4G association and the phosphorylation of eIF4G across ages, whereas the abundance of eIF4G declined and eIF2α phosphorylation increased with age. Therefore, when lacking anabolic stimulation, the decrease in MPS induced by LPS is associated with reduced ribosomal efficiency and decreased eIF4E ·eIF4G assembly, whereas that induced by development involves reduced ribosomal number, translation factor abundance, and increased eIF2α phosphorylation.


Asunto(s)
Desarrollo de Músculos/fisiología , Proteínas Musculares/biosíntesis , Biosíntesis de Proteínas , Ribosomas/metabolismo , Sepsis/fisiopatología , Animales , Animales Recién Nacidos/metabolismo , Glucemia/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Femenino , Insulina/metabolismo , Lipopolisacáridos/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Embarazo , Distribución Aleatoria , Transducción de Señal/fisiología , Porcinos
7.
Amino Acids ; 40(1): 157-65, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20505962

RESUMEN

Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal pigs but this response cannot be maintained unless the leucine-induced fall in amino acids is prevented. To determine whether leucine can stimulate protein synthesis in muscles of different fiber types and in visceral tissues of the neonate in the long-term if baseline amino acid concentrations are maintained, overnight fasted neonatal pigs were infused for 24 h with saline, leucine (400 micromol kg(-1) h(-1)), or leucine with replacement amino acids to prevent the leucine-induced hypoaminoacidemia. Changes in the fractional rate of protein synthesis and activation of mTOR, as determined by eukaryotic initiation factor 4E binding protein (4E-BP1) and S6 kinase 1 (S6K1) phosphorylation, in the gastrocnemius and masseter muscles, heart, liver, jejunum, kidney, and pancreas were measured. Leucine increased mTOR activation in the gastrocnemius and masseter muscles, liver, and pancreas, in both the absence and presence of amino acid replacement. However, protein synthesis in these tissues was increased only when amino acids were infused to maintain baseline levels. There were no changes in mTOR signaling or protein synthesis in the other tissues we examined. Thus, long-term infusion of leucine stimulates mTOR signaling in skeletal muscle and some visceral tissues but the leucine-induced stimulation of protein synthesis in these tissues requires sustained amino acid availability.


Asunto(s)
Leucina/administración & dosificación , Biosíntesis de Proteínas/efectos de los fármacos , Porcinos/metabolismo , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Factor 4E Eucariótico de Iniciación/metabolismo , Infusiones Intravenosas , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Fosforilación , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Porcinos/genética , Tiempo
8.
J Nutr ; 140(2): 264-70, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20032489

RESUMEN

The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented. To determine whether a parenteral leucine infusion can stimulate protein synthesis for a more prolonged, clinically relevant period if baseline amino acid concentrations are maintained, overnight food-deprived neonatal pigs were infused for 24 h with saline, leucine (400 mumol.kg(-1). h(-1)), or leucine with replacement amino acids. Amino acid replacement prevented the leucine-induced decrease in amino acids. Muscle protein synthesis was increased by leucine but only when other amino acids were supplied to maintain euaminoacidemia. Leucine did not affect activators of mammalian target of rapamycin (mTOR), i.e. protein kinase B, AMP-activated protein kinase, tuberous sclerosis complex 2, or eukaryotic elongation factor 2. There was no effect of treatment on the association of mTOR with regulatory associated protein of mammalian target of rapamycin (raptor), G-protein beta subunit-like protein, or rictor or the phosphorylation of raptor or proline-rich Akt substrate of 40 kDa. Phosphorylation of mTOR and its downstream targets, eukaryotic initiation factor (eIF) 4E binding protein and ribosomal protein S6 kinase, and the eIF4E . eIF4G association were increased and eIF2alpha phosphorylation was reduced by leucine and was not further altered by correcting for the leucine-induced hypoaminoacidemia. Thus, prolonged parenteral infusion of leucine activates mTOR and its downstream targets in neonatal skeletal muscle, but the stimulation of protein synthesis also is dependent upon amino acid availability.


Asunto(s)
Aminoácidos/sangre , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucina/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Infusiones Parenterales , Insulina/sangre , Leucina/administración & dosificación , Leucina/sangre , Músculo Esquelético/metabolismo , Fosforilación , Periodo Posprandial , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sus scrofa , Serina-Treonina Quinasas TOR
9.
J Nutr ; 139(10): 1873-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692527

RESUMEN

Food consumption increases protein synthesis in most tissues by promoting translation initiation, and in the neonate, this increase is greatest in skeletal muscle. In this study, we aimed to identify the currently unknown time course of changes in the rate of protein synthesis and the activation of factors involved in translation in neonatal muscle after a meal. After overnight food deprivation, 36 5- to 7-d-old piglets were administered a nutritionally complete bolus i.g. meal and were killed immediately before or 30, 60, 90, 120, or 240 min later. The increase in skeletal muscle protein synthesis peaked 30 min after the meal and this was sustained through 120 min, returning to baseline thereafter. The relative proportion of polysomes to nonpolysomes was higher only after 30 min. Protein kinase B phosphorylation peaked 30 min after feeding and returned to baseline by 90 min. The phosphorylation of mammalian target of rapamycin, eukaryotic initiation factor (eIF) 4E binding protein (4E-BP1), ribosomal protein S6, and eIF4G was increased within 30 min of feeding and persisted through 120 min, but all had returned to baseline by 240 min. The association of 4E-BP1.eIF4E was reduced and eIF4E.eIF4G increased 30 min after receiving a meal, remaining so for 120 min, before returning to baseline at 240 min. Thus, in neonates, food consumption rapidly increased skeletal muscle protein synthesis by enhancing translation initiation and this increase was sustained for at least 120 min after the meal but returned to baseline by 240 min after the feeding.


Asunto(s)
Sustitutos de la Leche/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/fisiología , Porcinos , Animales , Animales Recién Nacidos , Glucemia , Privación de Alimentos , Proteínas Musculares/genética , Factores de Tiempo
10.
Am J Physiol Endocrinol Metab ; 296(4): E702-13, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19141688

RESUMEN

Impaired transfer of methyl groups via the methionine cycle leads to plasma hyperhomocysteinemia. The tissue sources of plasma homocysteine in vivo have not been quantified nor whether hyperhomocysteinemia is due to increased entry or decreased removal. These issues were addressed in female rats offered diets with either adequate or excess methionine (additional methyl groups) with or without folate and choline (impaired methyl group transfer) for 5 wk. Whole body and tissue metabolism was measured based on isotopomer analysis following infusion with either [1-(13)C,methyl-(2)H3]methionine or [U-(13)C]methionine plus [1-(13)C]homocysteine. Although the fraction of intracellular methionine derived from methylation of homocysteine was highest in liver (0.18-0.21), most was retained. In contrast, the pancreas exported to plasma more of methionine synthesized de novo. The pancreas also exported homocysteine to plasma, and this matched the contribution from liver. Synthesis of methionine from homocysteine was reduced in most tissues with excess methionine supply and was also lowered in liver (P<0.01) with diets devoid of folate and choline. Plasma homocysteine concentration (P<0.001) and flux (P=0.001) increased with folate plus choline deficiency, although the latter still represented <12% of estimated tissue production. Hyperhomocysteinemia also increased (P<0.01) the inflow of homocysteine into most tissues, including heart. These findings indicate that a full understanding of hyperhomocysteinemia needs to include metabolism in a variety of organs, rather than an exclusive focus on the liver. Furthermore, the high influx of homocysteine into cardiac tissue may relate to the known association between homocysteinemia and hypertension.


Asunto(s)
Colina/farmacología , Dieta , Ácido Fólico/farmacología , Homocisteína/metabolismo , Metionina/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Colina/administración & dosificación , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacocinética , Femenino , Ácido Fólico/administración & dosificación , Metionina/farmacocinética , Modelos Biológicos , Ratas , Distribución Tisular
11.
Am J Physiol Endocrinol Metab ; 295(4): E868-75, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18682538

RESUMEN

Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.


Asunto(s)
Animales Recién Nacidos/fisiología , Leucina/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Antibióticos Antineoplásicos/farmacología , Western Blotting , Factor 4E Eucariótico de Iniciación/biosíntesis , Factor 4E Eucariótico de Iniciación/genética , Cinética , Complejos Multienzimáticos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Porcinos , Serina-Treonina Quinasas TOR
12.
Am J Physiol Endocrinol Metab ; 295(4): E876-83, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18682537

RESUMEN

Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.


Asunto(s)
Aminoácidos/farmacología , Hormona del Crecimiento/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Western Blotting , Peso Corporal/fisiología , Factor 4E Eucariótico de Iniciación/biosíntesis , Factor 4E Eucariótico de Iniciación/genética , Femenino , Glucosa/metabolismo , Hormonas/sangre , Cinética , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Proteínas Quinasas/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Porcinos , Serina-Treonina Quinasas TOR
13.
Am J Physiol Endocrinol Metab ; 295(1): E187-94, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18460595

RESUMEN

Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.


Asunto(s)
Hormona del Crecimiento/farmacología , Insulina/sangre , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Porcinos/metabolismo , Aminoácidos/metabolismo , Animales , Glucemia/metabolismo , Nitrógeno de la Urea Sanguínea , Factores Eucarióticos de Iniciación/metabolismo , Femenino , Hormona del Crecimiento/sangre , Immunoblotting , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Proteínas Quinasas S6 Ribosómicas/metabolismo , Porcinos/sangre , Serina-Treonina Quinasas TOR
14.
J Nutr ; 136(6 Suppl): 1701S-1705S, 2006 06.
Artículo en Inglés | MEDLINE | ID: mdl-16702342

RESUMEN

Animal studies show that the balance of methionine relative to other amino acids in the maternal diet is critical, as fetal growth is not only retarded by diets that are deficient but also by those containing excess. Diets with an inappropriate balance of methionine can adversely affect both short-term reproductive function and the long-term physiology of the offspring. The catabolism of unused methionine increases the demand for glycine and may cause a deficiency. High levels of methionine may also perturb intracellular S-adenosyl methionine pools and have an effect on the methylation of DNA and proteins. Excess methionine in the diet may also indirectly influence fetal development through the production of homocysteine or by the perturbation of endocrine functions. The metabolic interactions among dietary methionine, folic acid, and choline mean that other diet components can also change the methionine requirement.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Dieta , Fenómenos Fisiologicos Nutricionales Maternos , Metionina/administración & dosificación , Animales , Colina/administración & dosificación , Metilación de ADN , Interacciones Farmacológicas , Sistema Endocrino/efectos de los fármacos , Femenino , Desarrollo Fetal/efectos de los fármacos , Ácido Fólico/administración & dosificación , Homocisteína/biosíntesis , Humanos , Metionina/metabolismo , Metilación , Necesidades Nutricionales , Embarazo , Proteínas/metabolismo , S-Adenosilmetionina/biosíntesis , S-Adenosilmetionina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA