Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(17): 4148-4157, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38652843

RESUMEN

We propose a framework for describing the dynamics associated with the adsorption of small molecules to liquid-vapor interfaces using an intermediate resolution between traditional continuum theories that are bereft of molecular detail and molecular dynamics simulations that are replete with them. In particular, we develop an effective single particle equation of motion capable of describing the physical processes that determine thermal and mass accommodation probabilities. The effective equation is parametrized with quantities that vary through space away from the liquid-vapor interface. Of particular importance in describing the early time dynamics is the spatially dependent friction, for which we propose a numerical scheme to evaluate from molecular simulation. Taken together with potentials of mean force computable with importance sampling methods, we illustrate how to compute the mass accommodation coefficient and residence time distribution. Throughout, we highlight the case of ozone adsorption in aqueous solutions and its dependence on electrolyte composition.

2.
J Phys Chem B ; 128(15): 3755-3763, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38578662

RESUMEN

We present a combined Langmuir-Pockels trough and ambient pressure X-ray photoelectron spectroscopy (APXPS) study of the compression of stearic acid surfactant layers on neat water. Changes in the packing density of the molecules are directly determined from C 1s and O 1s APXPS data. The experimental data are fit with a 2D model for the stearic acid coverage. Based on the results of these proof-of-principle experiments, we discuss the remaining challenges that need to be overcome for future investigations of the role of surfactants in heterogeneous chemical reactions at liquid-vapor interfaces in combined Langmuir-Pockels trough and APXPS measurements.

3.
J Phys Chem Lett ; 15(11): 3002-3010, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38457923

RESUMEN

The molecular distribution at the liquid-vapor interface and evolution of the hydrogen bond interactions in mixtures of glycerol and choline chloride are investigated using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoscale depth profiles of supersaturated deep eutectic solvent (DES) mixtures up to ∼2 nm measured by ambient-pressure XPS show the enhancement of choline cation (Ch+) concentration by a factor of 2 at the liquid-vapor interface compared to the bulk. In addition, Raman spectral analysis of a wide range of DES mixtures reveals the conversion of gauche-conformer Ch+ into the anti-conformer in relatively lower ChCl concentrations. Finally, the depletion of Ch+ from the interface (probing depth = 0.4 nm) is demonstrated by aerosol-based velocity map imaging XPS measurements of glyceline and water mixtures. The nanostructure of liquid-vapor interfaces and structural rearrangement by hydration can provide critical insight into the molecular origin of the deep eutectic behavior and gas-capturing application of DESs.

4.
Annu Rev Phys Chem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382571

RESUMEN

Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

5.
Chem Sci ; 15(2): 736-756, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179528

RESUMEN

The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.

6.
Faraday Discuss ; 249(0): 9-37, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37795954

RESUMEN

In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.

7.
Chem Sci ; 14(23): 6430-6442, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325131

RESUMEN

Recent studies report the dramatic acceleration of chemical reactions in micron-sized compartments. In the majority of these studies the exact acceleration mechanism is unknown but the droplet interface is thought to play a significant role. Dopamine reacts with resorcinol to form a fluorescent product azamonardine and is used as a model system to examine how droplet interfaces accelerate reaction kinetics. The reaction is initiated by colliding two droplets levitated in a branched quadrupole trap, which allows the reaction to be observed in individual droplets where the size, concentration, and charge are carefully controlled. The collision of two droplets produces a pH jump and the reaction kinetics are quantified optically and in situ by measuring the formation of azamonardine. The reaction was observed to occur 1.5 to 7.4 times faster in 9-35 micron droplets compared to the same reaction conducted in a macroscale container. A kinetic model of the experimental results suggests that the acceleration mechanism arises from both the more rapid diffusion of oxygen into the droplet, as well as increased reagent concentrations at the air-water interface.

8.
J Phys Chem B ; 127(14): 3257-3265, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37014985

RESUMEN

The use of o-phthalaldehyde (OPA) in combination with a thiol reagent is a common method for detecting primary amines in amino acids, peptides, and proteins. Despite its widespread use, the exact reaction mechanism has been debated since the 1980s. Here, we measure the kinetics of the reaction between OPA, alanine, and a dithiol (1,4-dithiolthreitol, DTT) as a function of pH and reagent concentration. Using these new measurements and accompanying kinetic models, we find evidence that the pH dependence of the kinetics arises from both the protonation states of alanine and DTT, the hydration state of OPA, and the unproductive equilibrium with DTT, all of which are pH-dependent. These results support the mechanism originally proposed by Sternson [Rational design and evaluation of improved o-phthalaldehyde-like fluorogenic reagents. Anal. Biochem. 1985, 144, 233-246] and Wong [Reaction of o-phthalaldehyde with alanine and thiols: kinetics and mechanism. J. Am. Chem. Soc. 1985, 107, 6421-6422], in which the primary amine first reacts with OPA, followed by a reaction with the thiol to form the fluorescent isoindole product.

9.
J Phys Chem A ; 126(40): 7291-7308, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36170058

RESUMEN

A model is developed to describe trace gas uptake and reaction with applications to aerosols and microdroplets. Gas uptake by the liquid is formulated as a coupled equilibria that links gas, surface, and bulk regions of the droplet or solution. Previously, this framework was used in explicit stochastic reaction-diffusion simulations to predict the reactive uptake kinetics of ozone with droplets containing aqueous aconitic acid, maleic acid, and sodium nitrite. With the use of prior data and simulation results, a new equation for the uptake coefficient is derived, which accounts for both surface and bulk reactions. Lambert W functions are used to obtain closed form solutions to the integrated rate laws for the multiphase kinetics; similar to previous expressions that describe Michaelis-Menten enzyme kinetics. Together these equations couple interface and bulk processes over a wide range of conditions and do not require many of the limiting assumptions needed to apply resistor model formulations to explain trace gas uptake and reaction.


Asunto(s)
Ozono , Nitrito de Sodio , Ácido Aconítico , Aerosoles , Cinética
10.
J Phys Chem A ; 126(30): 4991-5010, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35863113

RESUMEN

Chemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O3. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes. To examine these dynamics, we use new and prior experimental observations of aqueous droplet reaction kinetics, including three systems with a range of surface affinities and ozonolysis rate coefficients (trans-aconitic acid (C6H6O6), maleic acid (C4H4O4), and sodium nitrite (NaNO2)). Using literature rate coefficients and thermodynamic properties, we constrain a simple two-compartment stochastic kinetic model which resolves the interface from the particle bulk and represents O3 partitioning, diffusion, and reaction as a coupled kinetic system. Our kinetic model accurately predicts decay kinetics across all three systems, demonstrating that both the thermodynamic properties of O3 and the coupled kinetic and diffusion processes are key to making accurate predictions. An enhanced concentration of adsorbed O3, compared to gas and bulk phases is rapidly maintained and remains constant even as O3 is consumed by reaction. Multiphase systems dynamically seek to achieve equilibrium in response to reactive O3 loss, but this is hampered at solute concentrations relevant to aqueous aerosol by the rate of O3 arrival in the bulk by diffusion. As a result, bulk-phase O3 becomes depleted from its Henry's law solubility. This bulk-phase O3 depletion limits reaction timescales for relatively slow-reacting organic solutes with low interfacial affinity (i.e., trans-aconitic and maleic acids, with krxn ≈ 103-104 M-1 s-1), which is in contrast to fast-reacting solutes with higher surface affinity (i.e., nitrite, with krxn ≈ 105 M-1 s-1) where surface reactions strongly impact the observed decay kinetics.


Asunto(s)
Ozono , Aerosoles/química , Difusión , Cinética , Ozono/química , Soluciones , Agua/química
11.
J Phys Chem A ; 126(19): 2959-2965, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35511037

RESUMEN

While examining the heterogeneous reaction of chlorine atoms with alkenes, in the presence of Cl2, we have observed an unexpectedly large enhancement of reactivity and the predominance of chlorinated reaction products even under high O2 conditions, where Cl atom recycling is expected to be minimal. These observations cannot be explained by known free radical oxidation or cycling mechanisms, but rather we find evidence for the multiphase catalytic coupling of free radical oxidation with electrophilic Cl2 addition. The mechanism entails the production of oxygenated reaction intermediates, which act as gas-liquid phase-transfer catalysts (gl-PTCs) by promoting the accommodation of gas-phase Cl2 by the aerosol, thereby enhancing electrophilic addition. Although the majority of PTCs typically couple chemistry between two immiscible liquid phases (aqueous/organic), there are few examples of PTCs that couple gas-liquid reactions. This work shows how multiphase reaction schemes of aerosols can be reimagined for understanding catalytic reaction mechanisms.

12.
Chem Sci ; 12(31): 10455-10466, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34447538

RESUMEN

A key challenge in predicting the multiphase chemistry of aerosols and droplets is connecting reaction probabilities, observed in an experiment, with the kinetics of individual elementary steps that control the chemistry that occurs across a gas/liquid interface. Here we report evidence that oxygenated molecules accelerate the heterogeneous reaction rate of chlorine gas with an alkene (squalene, Sqe) in submicron droplets. The effective reaction probability for Sqe is sensitive to both the aerosol composition and gas phase environment. In binary aerosol mixtures with 2-decyl-1-tetradecanol, linoleic acid and oleic acid, Sqe reacts 12-23× more rapidly than in a pure aerosol. In contrast, the reactivity of Sqe is diminished by 3× when mixed with an alkane. Additionally, small oxygenated molecules in the gas phase (water, ethanol, acetone, and acetic acid) accelerate (up to 10×) the heterogeneous chlorination rate of Sqe. The overall reaction mechanism is not altered by the presence of these aerosol and gas phase additives, suggesting instead that they act as catalysts. Since the largest rate acceleration occurs in the presence of oxygenated molecules, we conclude that halogen bonding enhances reactivity by slowing the desorption kinetics of Cl2 at the interface, in a way that is analogous to decreasing temperature. These results highlight the importance of relatively weak interactions in controlling the speed of multiphase reactions important for atmospheric and indoor environments.

13.
J Phys Chem B ; 125(32): 9037-9051, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34365795

RESUMEN

The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.


Asunto(s)
Agua , Simulación por Computador , Termodinámica
14.
Anal Chem ; 92(17): 11943-11952, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786501

RESUMEN

Single droplet levitation provides contactless access to the microphysical and chemical properties of micrometer-sized samples. Most applications of droplet levitation to chemical and biological systems use nondestructive optical techniques to probe droplet properties. To provide improved chemical specificity, we coupled a multicompartment quadrupole electrodynamic trap (QET) with single droplet mass spectrometry. Our QET continuously traps a monodisperse droplet population (tens to hundreds of droplets) and allows for the simultaneous sizing of a single droplet using its Mie scattering pattern. Single droplets are subsequently ejected into the ionization region of an ambient pressure inlet mass spectrometer. We optimized two complementary soft ionization techniques for picoliter aqueous droplets: (1) paper spray (PS) ionization and (2) thermal desorption glow discharge (TDGD) ionization. Both techniques detect oxygenated organic acids in single droplets, with signal-to-noise ratios >100 and detection limits on the order of 10 pg. Sensitivity and reproducibility across single droplets are driven by the droplet deposition location and spray stability in PS-MS and the ionization region humidity and analyte evaporation rate in TDGD-MS. Importantly, the analyte evaporation rate can control the TDGD-MS quantitative capability because high evaporation rates result in significant ion suppression. This effect is mitigated by optimizing the vaporization temperature, droplet size range, and analyte volatility. We demonstrate quantitative and reproducible measurements with a droplet internal standard (<10% RSD) and compare the sensitivity of PS-MS and TDGD-MS. Finally, we demonstrate the application of QET-MS to the study of heterogeneous chemical kinetics with the reaction of gas phase O3 and aqueous maleic acid droplets.

15.
J Phys Chem Lett ; 11(16): 6580-6585, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32787230

RESUMEN

In the gas phase, ozonolysis of olefins is known to be a significant source of free radicals. However, for heterogeneous and condensed phase ozone reactions, the importance of reaction pathways that couple Criegee intermediates (CI) with hydroxyl (OH), alkoxy, and peroxy free radicals remains uncertain. Here we report experimental evidence for substantial free radical oxidation during the heterogeneous reaction of O3 with cis-9-tricosene (Tri) aerosol. A kinetic model with three coupled submechanisms that include O3, CI, and free radical reactions is used to explain how the observed Tri reactivity and its product distributions depend upon [O3], [OH], and the presence of CI scavengers. During multiphase ozonolysis, the kinetic model predicts that only ∼30% of the alkene is actually consumed by O3, while the remaining ∼70% is consumed by free radicals that cycle through pathways involving CI. These results reveal the importance of free radical oxidation during heterogeneous ozonolysis, which has been previously difficult to isolate due to the complex coupling of CI and OH reaction pathways.

16.
Proc Natl Acad Sci U S A ; 117(9): 4486-4490, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071215

RESUMEN

Autoxidation is an autocatalytic free-radical chain reaction responsible for the oxidative destruction of organic molecules in biological cells, foods, plastics, petrochemicals, fuels, and the environment. In cellular membranes, lipid autoxidation (peroxidation) is linked with oxidative stress, age-related diseases, and cancers. The established mechanism of autoxidation proceeds via H-atom abstraction through a cyclic network of peroxy-hydroperoxide-mediated free-radical chain reactions. For a series of model unsaturated lipids, we present evidence for an autoxidation mechanism, initiated by hydroxyl radical (OH) addition to C=C bonds and propagated by chain reactions involving Criegee intermediates (CIs). This mechanism leads to unexpectedly rapid autoxidation even in the presence of water, implying that as reactive intermediates, CI could play a much more prominent role in chemistries beyond the atmosphere.

17.
Chem Sci ; 11(48): 13026-13043, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34094487

RESUMEN

Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼102 to 106 relative to macroscale bulk solutions. Despite electrospray's relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1-4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.

18.
Chem Sci ; 11(32): 8533-8545, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34123113

RESUMEN

A kinetic expression is derived to explain how interfaces alter bulk chemical equilibria and accelerate reactions in micro-compartments. This description, aided by the development of a stochastic model, quantitatively predicts previous experimental observations of accelerated imine synthesis in micron-sized emulsions. The expression accounts for how reactant concentration and compartment size together lead to accelerated reaction rates under micro-confinement. These rates do not depend solely on concentration, but rather the fraction of total molecules in the compartment that are at the interface. Although there are ∼107 to 1013 solute molecules in a typical micro-compartment, a kind of "stochasticity" appears when compartment size and reagent concentration yield nearly equal numbers of bulk and interfacial molecules. Although this is distinct from the stochasticity produced by nano-confinement, these results show how interfaces can govern chemical transformations in larger atmospheric, geologic and biological compartments.

19.
Environ Sci Technol ; 53(24): 14441-14448, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31757120

RESUMEN

Previous work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30 ppb h) with pure squalene particles. An increase in water vapor concentration led to strong enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass concentration of gas-phase VOCs by a factor of 3. The observed fraction of carbon in the gas-phase correlates with the fraction of particle volume lost. Experiments involving O3 oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction product generation occurs similarly on surfaces containing skin oil under realistic conditions. Similar behavior is expected for O3 reactions with other surface-bound organics containing unsaturated carbon bonds.


Asunto(s)
Ozono , Escualeno , Espectrometría de Masas , Compuestos Orgánicos , Vapor
20.
J Phys Chem A ; 123(28): 6034-6044, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31283250

RESUMEN

For aerosol particles that exist in highly viscous, diffusion-limited states, steep chemical gradients are expected to form during photochemical aging in the atmosphere. Under these conditions, species at the aerosol surface are more rapidly transformed than molecules residing in the particle interior. To examine the formation and evolution of chemical gradients at aerosol interfaces, the heterogeneous reaction of hydroxyl radicals (OH) on ∼200 nm particles of pure squalane (a branched, liquid hydrocarbon) and octacosane (a linear, solid hydrocarbon) and binary mixtures of the two are used to understand how diffusion limitations and phase separation impact the particle reactivity. Aerosol mass spectrometry is used to measure the effective heterogeneous OH uptake coefficient (γeff) and oxidation kinetics in the bulk, which are compared with the elemental composition of the surface obtained using X-ray photoemission. When diffusion rates are fast relative to the reaction frequency, as is the case for squalane and low-viscosity squalane-octacosane mixtures, the reaction is efficient (γeff ∼ 0.3) and only limited by the arrival of OH to the interface. However, for cases, where the diffusion rates are slower than reaction rates, as in pure octacosane and higher-viscosity squalane-octacosane mixtures, the heterogeneous reaction occurs in a mixing-limited regime and is ∼10× slower (γeff ∼ 0.03). This is in contrast to carbon and oxygen K edge X-ray absorption measurements that show that the octacosane interface is oxidized much more rapidly than that of pure squalane particles. The O/C ratio of the surface (estimated to be the top 6-8 nm of the interface) is measured to change with rate constants of (3.0 ± 0.9) × 10-13 and (8.6 ± 1.2) × 10-13 cm3 molecule-1 s-1 for squalane and octacosane particles, respectively. The differences in surface oxidation rates are analyzed using a previously published reaction-diffusion model, which suggests that a 1-2 nm highly oxidized crust forms on octacosane particles, whereas in pure squalane, the reaction products are homogeneously mixed within the aerosol. This work illustrates how diffusion limitations can form particles with highly oxidized surfaces even at relatively low oxidant exposures, which is in turn expected to influence their microphysics in the atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...