Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 13(1): 193-206, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31231024

RESUMEN

The temporal order of DNA replication is regulated during development and is highly correlated with gene expression, histone modifications and 3D genome architecture. We tracked changes in replication timing, gene expression, and chromatin conformation capture (Hi-C) A/B compartments over the first two cell cycles during differentiation of human embryonic stem cells to definitive endoderm. Remarkably, transcriptional programs were irreversibly reprogrammed within the first cell cycle and were largely but not universally coordinated with replication timing changes. Moreover, changes in A/B compartment and several histone modifications that normally correlate strongly with replication timing showed weak correlation during the early cell cycles of differentiation but showed increased alignment in later differentiation stages and in terminally differentiated cell lines. Thus, epigenetic cell fate transitions during early differentiation can occur despite dynamic and discordant changes in otherwise highly correlated genomic properties.


Asunto(s)
Reprogramación Celular/genética , Cromatina/genética , Momento de Replicación del ADN , Células Madre/metabolismo , Transcripción Genética , Ciclo Celular/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Humanos , Modelos Biológicos , Células Madre/citología
2.
Cell Cycle ; 15(18): 2464-75, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27433885

RESUMEN

Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification.


Asunto(s)
Linaje de la Célula , Replicación del ADN , Fase G1 , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Fase S , Diferenciación Celular , Línea Celular , Supervivencia Celular , Fluorescencia , Humanos , Imagenología Tridimensional , Mitosis , Factores de Transcripción SOXF/metabolismo , Análisis de la Célula Individual , Factores de Tiempo , Ubiquitinación
3.
Nanofabrication ; 2(1): 34-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27617264

RESUMEN

Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate.

4.
PLoS One ; 6(3): e17896, 2011 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-21479270

RESUMEN

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the ß-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.


Asunto(s)
Fluorescencia , Proteínas Luminiscentes/metabolismo , Ingeniería de Proteínas/métodos , Animales , Células COS , Supervivencia Celular , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo
5.
J Cell Biol ; 192(1): 29-41, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21220507

RESUMEN

The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Replicación del ADN , Animales , Células CHO , Línea Celular , Supervivencia Celular , Cricetinae , Cricetulus , ADN/biosíntesis , ADN Helicasas/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Fase G1 , Ratones , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transporte de Proteínas
6.
Traffic ; 11(6): 782-99, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20331534

RESUMEN

In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.


Asunto(s)
Actinas/química , Movimiento Celular , Integrinas/metabolismo , Proteínas de la Membrana/química , Proteínas de Microfilamentos/química , Animales , Células COS , Chlorocebus aethiops , Citocalasina D/química , Endocitosis , Endosomas/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...