Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
BMC Genomics ; 25(1): 122, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287261

RESUMEN

BACKGROUND: Cancers exhibit complex transcriptomes with aberrant splicing that induces isoform-level differential expression compared to non-diseased tissues. Transcriptomic profiling using short-read sequencing has utility in providing a cost-effective approach for evaluating isoform expression, although short-read assembly displays limitations in the accurate inference of full-length transcripts. Long-read RNA sequencing (Iso-Seq), using the Pacific Biosciences (PacBio) platform, can overcome such limitations by providing full-length isoform sequence resolution which requires no read assembly and represents native expressed transcripts. A constraint of the Iso-Seq protocol is due to fewer reads output per instrument run, which, as an example, can consequently affect the detection of lowly expressed transcripts. To address these deficiencies, we developed a concatenation workflow, PacBio Full-Length Isoform Concatemer Sequencing (PB_FLIC-Seq), designed to increase the number of unique, sequenced PacBio long-reads thereby improving overall detection of unique isoforms. In addition, we anticipate that the increase in read depth will help improve the detection of moderate to low-level expressed isoforms. RESULTS: In sequencing a commercial reference (Spike-In RNA Variants; SIRV) with known isoform complexity we demonstrated a 3.4-fold increase in read output per run and improved SIRV recall when using the PB_FLIC-Seq method compared to the same samples processed with the Iso-Seq protocol. We applied this protocol to a translational cancer case, also demonstrating the utility of the PB_FLIC-Seq method for identifying differential full-length isoform expression in a pediatric diffuse midline glioma compared to its adjacent non-malignant tissue. Our data analysis revealed increased expression of extracellular matrix (ECM) genes within the tumor sample, including an isoform of the Secreted Protein Acidic and Cysteine Rich (SPARC) gene that was expressed 11,676-fold higher than in the adjacent non-malignant tissue. Finally, by using the PB_FLIC-Seq method, we detected several cancer-specific novel isoforms. CONCLUSION: This work describes a concatenation-based methodology for increasing the number of sequenced full-length isoform reads on the PacBio platform, yielding improved discovery of expressed isoforms. We applied this workflow to profile the transcriptome of a pediatric diffuse midline glioma and adjacent non-malignant tissue. Our findings of cancer-specific novel isoform expression further highlight the importance of long-read sequencing for characterization of complex tumor transcriptomes.


Asunto(s)
Glioma , Transcriptoma , Humanos , Niño , Perfilación de la Expresión Génica/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
Pediatr Neurol ; 138: 95-97, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434915

RESUMEN

BACKGROUND: Cockayne syndrome is a rare DNA repair disorder marked by premature aging, poor growth, and intellectual disability. Neurological complications such as seizures, movement disorder, and stroke have been reported. Hemiplegic migraine has not been reported in association with Cockayne syndrome. METHODS: We report a male with Cockayne syndrome due to biallelic heterozygous pathogenic variants in ERCC6 who presented repeatedly with transient focal neurological deficits and headache, which were consistent with hemiplegic migraine. Two siblings also had Cockayne syndrome and presented with similar symptoms. RESULTS: Our patient was originally diagnosed based on clinical suspicion and then confirmed by targeted exome analysis of genes associated with Cockayne syndrome. The family's research exome sequencing data were reanalyzed to identify variants in genes known to cause familial hemiplegic migraine. No variants in the genes known to cause familial hemiplegic migraine were identified. CONCLUSION: This is a novel association of familial hemiplegic migraine in three full siblings with Cockayne syndrome. Hemiplegic migraine has not previously been described as part of the Cockayne syndrome presentation. A separate genetic cause of familial hemiplegic migraines was not identified in an exome-based analysis of genes known to cause this condition. This report may represent an expansion of the Cockayne syndrome phenotype.


Asunto(s)
Síndrome de Cockayne , Migraña con Aura , Masculino , Humanos , Migraña con Aura/diagnóstico , Síndrome de Cockayne/genética , Hemiplejía/genética , Hermanos , Fenotipo
3.
Brain ; 146(1): 387-404, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35802027

RESUMEN

Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-ß-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Microcefalia , Células-Madre Neurales , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Discapacidad Intelectual/genética , Organoides/metabolismo , Proteínas del Citoesqueleto , Factores de Transcripción/metabolismo
4.
Genes Chromosomes Cancer ; 62(1): 39-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716171

RESUMEN

Ependymal tumors are the third most common brain tumor under 14 years old. Even though metastatic disease is a rare event, it affects mostly young children and carries an adverse prognosis. The factors associated with dissemination and the best treatment approach have not yet been established and there is limited published data on how to manage metastatic disease, especially in patients under 3 years of age. We provide a review of the literature on clinical characteristics and radiation-sparing treatments for metastatic ependymoma in children under 3 years of age treated. The majority (73%) of the identified cases were above 12 months old and had the PF as the primary site at diagnosis. Chemotherapy-based approaches, in different regimens, were used with radiation reserved for progression or relapse. The prognosis varied among the studies, with an average of 50%-58% overall survival. This study also describes the case of a 7-month-old boy with metastatic posterior fossa (PF) ependymoma, for whom we identified a novel SPECC1L-RAF1 gene fusion using a patient-centric comprehensive molecular profiling protocol. The patient was successfully treated with intensive induction chemotherapy followed by high-dose chemotherapy and autologous hematopoietic progenitor cell rescue (AuHSCR). Currently, the patient is in continuous remission 5 years after his diagnosis, without radiation therapy. The understanding of the available therapeutic approaches may assist physicians in their management of such patients. This report also opens the perspective of newly identified molecular alterations in metastatic ependymomas that might drive more chemo-sensitive tumors.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Trasplante de Células Madre Hematopoyéticas , Niño , Masculino , Humanos , Preescolar , Lactante , Adolescente , Recurrencia Local de Neoplasia , Ependimoma/tratamiento farmacológico , Ependimoma/genética , Ependimoma/radioterapia , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico
5.
Front Genet ; 14: 1298574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304066

RESUMEN

Background: Leigh syndrome is a rare, genetic, and severe mitochondrial disorder characterized by neuromuscular issues (ataxia, seizure, hypotonia, developmental delay, dystonia) and ocular abnormalities (nystagmus, atrophy, strabismus, ptosis). It is caused by pathogenic variants in either mitochondrial or nuclear DNA genes, with an estimated incidence rate of 1 per 40,000 live births. Case presentation: Herein, we present an infant male with nystagmus, hypotonia, and developmental delay who carried a clinical diagnosis of Leigh-like syndrome. Cerebral magnetic resonance imaging changes further supported the clinical evidence of an underlying mitochondrial disorder, but extensive diagnostic testing was negative. Trio exome sequencing under a research protocol uncovered compound-heterozygous missense variants in the HTRA2 gene (MIM: #606441): NM_013247.5:c.1037A>T:(p.Glu346Val) (maternal) and NM_013247.5:c.1172T>A:(p.Val391Glu) (paternal). Both variants are absent from public databases, making them extremely rare in the population. The maternal variant is adjacent to an exon-intron boundary and predicted to disrupt splicing, while the paternal variant alters a highly conserved amino acid and is predicted to be damaging by nearly all in silico tools. Biallelic variants in HTRA2 cause 3-methylglutaconic aciduria, type VIII (MGCA8), an extremely rare autosomal recessive disorder with fewer than ten families reported to date. Variant interpretation is challenging given the paucity of known disease-causing variants, and indeed we assess both paternal and maternal variants as Variants of Uncertain Significance under current American College of Medical Genetics guidelines. However, based on the inheritance pattern, suggestive evidence of pathogenicity, and significant clinical correlation with other reported MGCA8 patients, the clinical care team considers this a diagnostic result. Conclusion: Our findings ended the diagnostic odyssey for this family and provide further insights into the genetic and clinical spectrum of this critically under-studied disorder.

6.
Acta Neuropathol Commun ; 10(1): 168, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411471

RESUMEN

Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.


Asunto(s)
Encefalitis , Microglía , Niño , Humanos , Microglía/patología , Proteómica , Encefalitis/genética , Encefalitis/complicaciones , Inflamación/metabolismo
7.
J Mol Diagn ; 24(12): 1292-1306, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36191838

RESUMEN

Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.


Asunto(s)
Neoplasias , Transcriptoma , Adolescente , Niño , Humanos , Empalme Alternativo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Isoformas de Proteínas/genética , ARN/genética , Análisis de Secuencia de ARN , Adulto Joven
8.
Front Oncol ; 12: 932337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912263

RESUMEN

Rhabdoid tumors (RTs) of the brain (atypical teratoid/rhabdoid tumor; AT/RT) and extracranial sites (most often the kidney; RTK) are malignant tumors predominantly occurring in children, frequently those with SMARCB1 germline alterations. Here we present data from seven RTs from three pediatric patients who all had multi-organ involvement. The tumors were analyzed using a multimodal molecular approach, which included exome sequencing of tumor and germline comparator and RNA sequencing and DNA array-based methylation profiling of tumors. SMARCB1 germline alterations were identified in all patients and in all tumors. We observed a second hit in SMARCB1 via chr22 loss of heterozygosity. By methylation profiling, all tumors were classified as rhabdoid tumors with a corresponding subclassification within the MYC, TYR, or SHH AT/RT subgroups. Using RNA-seq gene expression clustering, we recapitulated the classification of known AT/RT subgroups. Synchronous brain and kidney tumors from the same patient showed different patterns of either copy number variants, single-nucleotide variants, and/or genome-wide DNA methylation, suggestive of non-clonal origin. Furthermore, we demonstrated that a lung and abdominal metastasis from two patients shared overlapping molecular features with the patient's primary kidney tumor, indicating the likely origin of the metastasis. In addition to the SMARCB1 events, we identified other whole-chromosome events and single-nucleotide variants in tumors, but none were found to be prognostic, diagnostic, or offer therapeutic potential for rhabdoid tumors. While our findings are of biological interest, there may also be clinical value in comprehensive molecular profiling in patients with multiple rhabdoid tumors, particularly given the potential prognostic and therapeutic implications for different rhabdoid tumor subgroups demonstrated in recent clinical trials and other large cohort studies.

9.
Epilepsia ; 63(8): 1981-1997, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687047

RESUMEN

OBJECTIVE: Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS: We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS: We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE: These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Epilepsia/patología , Humanos , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
11.
Nat Cancer ; 3(6): 768-782, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35590059

RESUMEN

DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Islas de CpG/genética , Metilación de ADN/genética , Genoma Humano , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiones Promotoras Genéticas
12.
Artículo en Inglés | MEDLINE | ID: mdl-35534222

RESUMEN

De novo variants are increasingly recognized as a common cause of early infantile epileptic encephalopathies. We present a 4-year-old male with epileptic encephalopathy characterized by seizures, autism spectrum disorder, and global developmental delay. Whole genome sequencing of the proband and his unaffected parents revealed a novel de novo missense variant in GRIA2 (c.1589A>T; p.Lys530Met; ENST00000264426.14). Variants in the GRIA2 gene were recently reported to cause an autosomal dominant neurodevelopmental disorder with language impairments and behavioral abnormalities (OMIM; MIM #618917), a condition characterized by intellectual disability and developmental delay in which seizures are a common feature. The de novo variant identified in our patient maps to the edge of a key ligand binding domain of the AMPA receptor and has not been previously reported in gnomAD or other public databases, making it novel. Our findings provided a long-sought diagnosis for this patient and support the link between GRIA2 and a dominant neurodevelopmental disorder.

13.
Rheumatology (Oxford) ; 62(1): 347-359, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35412596

RESUMEN

OBJECTIVE: To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS: Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1ß) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS: A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION: Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , FN-kappa B
14.
Artículo en Inglés | MEDLINE | ID: mdl-35149534

RESUMEN

Closed spinal dysraphism (SD) is a type of neural tube defect originating during early embryonic development whereby the neural tissue of the spinal defect remains covered by skin, often coinciding with markers of cutaneous stigmata. It is hypothesized that these events are caused by multifactorial processes, including genetic and environmental causes. We present an infant with a unique congenital midline lesion associated with a closed SD. Through comprehensive molecular profiling of the intraspinal lesion and contiguous skin lesion, an internal tandem duplication (ITD) of the kinase domain of the fibroblast growth factor receptor 1 (FGFR1) gene was found. This ITD variant is somatic mosaic in nature as supported by a diminished variant allele frequency in the lesional tissue and by its absence in peripheral blood. FGFR1 ITD results in constitutive activation of the receptor tyrosine kinase to promote cell growth, differentiation, and survival through RAS/MAPK signaling. Identification of FGFR1 ITD outside of central nervous system tumors is exceedingly rare, and this report broadens the phenotypic spectrum of somatic mosaic FGFR1-related disease.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Defectos del Tubo Neural , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Humanos , Lactante , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
15.
Artículo en Inglés | MEDLINE | ID: mdl-35091508

RESUMEN

Noncoding and synonymous coding variants that exert their effects via alternative splicing are increasingly recognized as an important category of disease-causing variants. In this report, we describe two siblings who presented with hypotonia, profound developmental delays, and seizures. Brain magnetic resonance imaging (MRI) in the proband at 5 yr showed diffuse cerebral and cerebellar white matter volume loss. Both siblings later developed ventilator-dependent respiratory insufficiency and scoliosis and are currently nonverbal and nonambulatory. Extensive molecular testing including oligo array and clinical exome sequencing was nondiagnostic. Research genome sequencing under an institutional review board (IRB)-approved study protocol revealed that both affected children were compound-heterozygous for variants in the SEPSECS gene. One variant was an initiator codon change (c.1A > T) that disrupted protein translation, consistent with the observation that most disease-causing variants are loss-of-function changes. The other variant was a coding change (c.846G > A) that was predicted to be synonymous but had been demonstrated to disrupt mRNA splicing in a minigene assay. The SEPSECS gene encodes O-phosphoseryl-tRNA(Sec) selenium transferase, an enzyme that participates in the biosynthesis and transport of selenoproteins in the body. Variations in SEPSECS cause autosomal recessive pontocerebellar hypoplasia type 2D (PCHT 2D; OMIM #613811), a neurodegenerative condition characterized by progressive cerebrocerebellar atrophy, microcephaly, and epileptic encephalopathy. The identification of biallelic pathogenic variants in this family-one of which was a synonymous change not identified by prior clinical testing-not only ended the diagnostic odyssey for this family but also highlights the contribution of occult pathogenic variants that may not be recognized by standard genetic testing methodologies.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedades Cerebelosas , Microcefalia , Aminoacil-ARNt Sintetasas/genética , Enfermedades Cerebelosas/genética , Niño , Humanos , Microcefalia/genética , Mutación , Hermanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-35091509

RESUMEN

Alterations in the TAOK1 gene have recently emerged as the cause of developmental delay with or without intellectual impairment or behavioral abnormalities (MIM # 619575). The 32 cases currently described in the literature have predominantly de novo alterations in TAOK1 and a wide spectrum of neurodevelopmental abnormalities. Here, we report four patients with novel pathogenic TAOK1 variants identified by research genome sequencing, clinical exome sequencing, and international matchmaking. The overlapping clinical features of our patients are consistent with the emerging core phenotype of TAOK1-associated syndrome: facial dysmorphism, feeding difficulties, global developmental delay, joint laxity, and hypotonia. However, behavioral abnormalities and gastrointestinal issues are more common in our cohort than previously reported. Two patients have de novo TAOK1 variants (one missense, one splice site) consistent with most known alterations in this gene. However, we also report the first sibling pair who both inherited a TAOK1 frameshift variant from a mildly affected mother. Our findings suggest that incomplete penetrance and variable expressivity are relatively common in TAOK1-associated syndrome, which holds important implications for clinical genetic testing.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas Serina-Treonina Quinasas/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome , Secuenciación del Exoma
17.
Diagn Microbiol Infect Dis ; 102(4): 115631, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35045382

RESUMEN

One SARS-CoV-2-positive sample demonstrated impaired detection of the N1 target by RT-PCR using US CDC primer/probe sets. A 3 nucleotide deletion was discovered that overlaps the forward primer binding site. This finding underscores the importance of continued SARS-CoV-2 mutation surveillance and assessment of the impact on diagnostic test performance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Cartilla de ADN/genética , Humanos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
18.
Hum Mutat ; 43(2): 189-199, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859533

RESUMEN

Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.


Asunto(s)
Proteínas de Homeodominio , Sindactilia , Factores de Transcripción , Proteínas de Homeodominio/genética , Humanos , Linaje , Estudios Retrospectivos , Sindactilia/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
19.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863095

RESUMEN

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Asunto(s)
Genoma , Neoplasias , Niño , Genómica , Humanos , Neoplasias/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
20.
Acta Neuropathol Commun ; 9(1): 192, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895332

RESUMEN

Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 ependymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC (8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal ependymoma within the molecular subgroup of SP-MYCN.


Asunto(s)
Ependimoma/diagnóstico , Proteína Proto-Oncogénica N-Myc , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Columna Vertebral/diagnóstico , Niño , Ependimoma/genética , Ependimoma/patología , Humanos , Masculino , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/patología , Neoplasias de la Columna Vertebral/genética , Neoplasias de la Columna Vertebral/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...