Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601857

RESUMEN

Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.

2.
PLoS One ; 19(1): e0294842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170710

RESUMEN

Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.


Asunto(s)
Genoma Mitocondrial , Genoma Mitocondrial/genética , Altitud , Flujo Genético , Mitocondrias/genética , Ambiente , Adaptación Fisiológica/genética , Selección Genética
3.
Int J Parasitol Parasites Wildl ; 20: 122-132, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36798510

RESUMEN

Using samples spanning 10-degrees of latitude in Alaska, we provide the first comparative assessment of avian haemosporidia distribution of Arctic Alaska with subarctic host populations for four species of grouse and three species of ptarmigan (Galliformes). We found a high overall prevalence for at least one haemospordian genus (88%; N = 351/400), with spruce grouse (Canachites canadensis) showing the highest prevalence (100%; N = 54/54). Haemoproteus and Plasmodium lineages were only observed within grouse, while Leucocytozoon species were found within both grouse and ptarmigan. Further, different Leucocytozoon lineages were obtained from blood and tissue samples from the same individual, potentially due to the differential timing and duration of blood and tissue stages. Using different primer sets, we were able to identify different Leucocytozoon lineages within 55% (N = 44/80) of sequenced individuals, thereby detecting coinfections that may have otherwise gone undetected. The commonly used Haemoproteus/Plasmodium primers amplified Leucocytozoon for 90% (N = 103/115) of the products sequenced, highlighting the potential value of alternate primers to identify intra-genus coinfections and the importance of obtaining sequence information rather than relying solely on PCR amplification to assess parasite diversity. Overall, this dataset provides baseline information on parasite lineage distributions to assess the range expansion associated with climate change into Arctic regions and underscores methodological considerations for future studies.

4.
J Parasitol ; 108(2): 192-198, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435985

RESUMEN

Grouse and ptarmigan (Galliformes) harbor fairly diverse helminth faunas that can impact the host's health, including filarial nematodes in the genus Splendidofilaria. As host and parasite distributions are predicted to shift in response to recent climate change, novel parasites may be introduced into a region and impose additional stressors on bird populations. Limited information is available on the prevalence of filariasis in Alaska galliforms. To date, no molecular surveys have been completed. Past studies relied on examining blood smears or total body necropsies, which are time-consuming and may not detect filarial parasites with low prevalence in hosts. Therefore, we developed a TaqMan probe-based real-time PCR assay targeting the cytochrome c oxidase 1 gene (COI) of Splendidofilaria to decrease processing times and increase sensitivity as well as provide baseline data on the diversity of filariid infections in galliform species in Alaska. We screened a combined total of 708 galliform samples (678 unique individual birds) from different tissues (blood, muscle, and lung) for the presence of filarial DNA across the state of Alaska. Real-time PCR screening revealed an overall prevalence of filarial infection of 9.5% across species: Bonasa umbellus (0%, n = 23), Dendragapus fuliginosus (0%, n = 8), Falcipennis canadensis (26.8%, n = 198), Lagopus lagopus (2.6%, n = 274), Lagopus leucura (0%, n = 23), Lagopus muta (3%, n = 166), and Tympanuchus phasianellus (12.5%, n = 16). We observed microfilarial infections throughout most of Alaska except in Arctic regions and the Aleutian Islands where viable vectors may not be present.


Asunto(s)
Filariasis , Filarioidea , Galliformes , Animales , Filariasis/epidemiología , Filariasis/parasitología , Filariasis/veterinaria , Filarioidea/genética , Microfilarias/genética , Codorniz , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
5.
Mol Phylogenet Evol ; 161: 107164, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33798675

RESUMEN

Insight into complex evolutionary histories continues to build through broad comparative phylogenomic and population genomic studies. In particular, there is a need to understand the extent and scale that gene flow contributes to standing genomic diversity and the role introgression has played in evolutionary processes such as hybrid speciation. Here, we investigate the evolutionary history of the Mergini tribe (sea ducks) by coupling multi-species comparisons with phylogenomic analyses of thousands of nuclear ddRAD-seq loci, including Z-sex chromosome and autosomal linked loci, and the mitogenome assayed across all extant sea duck species in North America. All sea duck species are strongly structured across all sampled marker types (pair-wise species ΦST > 0.2), with clear genetic assignments of individuals to their respective species, and phylogenetic relationships recapitulate known relationships. Despite strong species integrity, we identify at least 18 putative hybrids; with all but one being late generational backcrosses. Most interesting, we provide the first evidence that an ancestral gene flow event between long-tailed ducks (Clangula hyemalis) and true Eiders (Somateria spp.) not only moved genetic material into the former species, but likely generated a novel species - the Steller's eider (Polysticta stelleri) - via hybrid speciation. Despite generally low contemporary levels of gene flow, we conclude that hybridization has and continues to be an important process that shifts novel genetic variation between species within the tribe Mergini. Finally, we outline methods that permit researchers to contrast genomic patterns of contemporary versus ancestral gene flow when attempting to reconstruct potentially complex evolutionary histories.


Asunto(s)
Patos/genética , Evolución Molecular , Flujo Génico , Genoma/genética , Genómica , Filogenia , Animales , Océanos y Mares
6.
Heredity (Edinb) ; 127(1): 107-123, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33903741

RESUMEN

Introgression of beneficial alleles has emerged as an important avenue for genetic adaptation in both plant and animal populations. In vertebrates, adaptation to hypoxic high-altitude environments involves the coordination of multiple molecular and cellular mechanisms, including selection on the hypoxia-inducible factor (HIF) pathway and the blood-O2 transport protein hemoglobin (Hb). In two Andean duck species, a striking DNA sequence similarity reflecting identity by descent is present across the ~20 kb ß-globin cluster including both embryonic (HBE) and adult (HBB) paralogs, though it was yet untested whether this is due to independent parallel evolution or adaptive introgression. In this study, we find that identical amino acid substitutions in the ß-globin cluster that increase Hb-O2 affinity have likely resulted from historical interbreeding between high-altitude populations of two different distantly-related species. We examined the direction of introgression and discovered that the species with a deeper mtDNA divergence that colonized high altitude earlier in history (Anas flavirostris) transferred adaptive genetic variation to the species with a shallower divergence (A. georgica) that likely colonized high altitude more recently possibly following a range shift into a novel environment. As a consequence, the species that received these ß-globin variants through hybridization might have adapted to hypoxic conditions in the high-altitude environment more quickly through acquiring beneficial alleles from the standing, hybrid-origin variation, leading to faster evolution.


Asunto(s)
Altitud , Globinas beta , Animales , Proteínas Portadoras , Evolución Molecular , Análisis de Secuencia de ADN , Globinas beta/genética , Globinas beta/metabolismo
7.
Ecol Evol ; 10(15): 8379-8393, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788987

RESUMEN

Understanding both sides of host-parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host-parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole-genome sequencing to obtain hundreds of genes and thousands of single-nucleotide polymorphisms (SNPs) for the lice and double-digest restriction-associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.

8.
Ecol Evol ; 9(12): 7246-7261, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380047

RESUMEN

Dispersal shapes demographic processes and therefore is fundamental to understanding biological, ecological, and evolutionary processes acting within populations. However, assessing population connectivity in scoters (Melanitta sp.) is challenging as these species have large spatial distributions that span remote landscapes, have varying nesting distributions (disjunct vs. continuous), exhibit unknown levels of dispersal, and vary in the timing of the formation of pair bonds (winter vs. fall/spring migration) that may influence the distribution of genetic diversity. Here, we used double-digest restriction-associated DNA sequence (ddRAD) and microsatellite genotype data to assess population structure within the three North American species of scoter (black scoter, M. americana; white-winged scoter, M. deglandi; surf scoter, M. perspicillata), and between their European congeners (common scoter, M. nigra; velvet scoter, M. fusca). We uncovered no or weak genomic structure (ddRAD Φ ST < 0.019; microsatellite F ST < 0.004) within North America but high levels of structure among European congeners (ddRAD Φ ST > 0.155, microsatellite F ST > 0.086). The pattern of limited genomic structure within North America is shared with other sea duck species and is often attributed to male-biased dispersal. Further, migratory tendencies (east vs. west) of female surf and white-winged scoters in central Canada are known to vary across years, providing additional opportunities for intracontinental dispersal and a mechanism for the maintenance of genomic connectivity across North America. In contrast, the black scoter had relatively elevated levels of divergence between Alaska and Atlantic sites and a second genetic cluster found in Alaska at ddRAD loci was concordant with its disjunct breeding distribution suggestive of a dispersal barrier (behavioral or physical). Although scoter populations appear to be connected through a dispersal network, a small percentage (<4%) of ddRAD loci had elevated divergence which may be useful in linking areas (nesting, molting, staging, and wintering) throughout the annual cycle.

9.
Ecol Evol ; 8(16): 8328-8343, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250706

RESUMEN

Anthropogenic alterations to landscape structure and composition can have significant impacts on biodiversity, potentially leading to species extinctions. Population-level impacts of landscape change are mediated by animal behaviors, in particular dispersal behavior. Little is known about the dispersal habits of rails (Rallidae) due to their cryptic behavior and tendency to occupy densely vegetated habitats. The effects of landscape structure on the movement behavior of waterbirds in general are poorly studied due to their reputation for having high dispersal abilities. We used a landscape genetic approach to test hypotheses of landscape effects on dispersal behavior of the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered subspecies endemic to the Hawaiian Islands. We created a suite of alternative resistance surfaces representing biologically plausible a priori hypotheses of how gallinules might navigate the landscape matrix and ranked these surfaces by their ability to explain observed patterns in genetic distance among 12 populations on the island of O`ahu. We modeled effective distance among wetland locations on all surfaces using both cumulative least-cost-path and resistance-distance approaches and evaluated relative model performance using Mantel tests, a causal modeling approach, and the mixed-model maximum-likelihood population-effects framework. Across all genetic markers, simulation methods, and model comparison metrics, surfaces that treated linear water features like streams, ditches, and canals as corridors for gallinule movement outperformed all other models. This is the first landscape genetic study on the movement behavior of any waterbird species to our knowledge. Our results indicate that lotic water features, including drainage infrastructure previously thought to be of minimal habitat value, contribute to habitat connectivity in this listed subspecies.

10.
Ecol Evol ; 8(16): 8490-8507, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250718

RESUMEN

Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white-fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white-fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high-latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status.

11.
Genome Biol Evol ; 10(1): 14-32, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29211852

RESUMEN

Local adaptation frequently occurs across populations as a result of migration-selection balance between divergent selective pressures and gene flow associated with life in heterogeneous landscapes. Studying the effects of selection and gene flow on the adaptation process can be achieved in systems that have recently colonized extreme environments. This study utilizes an endemic South American duck species, the speckled teal (Anas flavirostris), which has both high- and low-altitude populations. High-altitude speckled teal (A. f. oxyptera) are locally adapted to the Andean environment and mostly allopatric from low-altitude birds (A. f. flavirostris); however, there is occasional gene flow across altitudinal gradients. In this study, we used next-generation sequencing to explore genetic patterns associated with high-altitude adaptation in speckled teal populations, as well as the extent to which the balance between selection and migration have affected genetic architecture. We identified a set of loci with allele frequencies strongly correlated with altitude, including those involved in the insulin-like signaling pathway, bone morphogenesis, oxidative phosphorylation, responders to hypoxia-induced DNA damage, and feedback loops to the hypoxia-inducible factor pathway. These same outlier loci were found to have depressed gene flow estimates, as well as being highly concentrated on the Z-chromosome. Our results suggest a multifactorial response to life at high altitudes through an array of interconnected pathways that are likely under positive selection and whose genetic components seem to be providing an effective genomic barrier to interbreeding, potentially functioning as an avenue for population divergence and speciation.


Asunto(s)
Aclimatación , Patos/genética , Patos/fisiología , Flujo Génico , Flujo Genético , Adaptación Fisiológica , Altitud , Migración Animal , Animales , Polimorfismo de Nucleótido Simple , Selección Genética
12.
Evolution ; 72(1): 95-112, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29094340

RESUMEN

Parasite diversity accounts for most of the biodiversity on earth, and is shaped by many processes (e.g., cospeciation, host switching). To identify the effects of the processes that shape parasite diversity, it is ideal to incorporate both deep (phylogenetic) and shallow (population) perspectives. To this end, we developed a novel workflow to obtain phylogenetic and population genetic data from whole genome sequences of body lice parasitizing New World ground-doves. Phylogenies from these data showed consistent, highly resolved species-level relationships for the lice. By comparing the louse and ground-dove phylogenies, we found that over long-term evolutionary scales their phylogenies were largely congruent. Many louse lineages (both species and populations) also demonstrated high host-specificity, suggesting ground-dove divergence is a primary driver of their parasites' diversity. However, the few louse taxa that are generalists are structured according to biogeography at the population level. This suggests dispersal among sympatric hosts has some effect on body louse diversity, but over deeper time scales the parasites eventually sort according to host species. Overall, our results demonstrate that multiple factors explain the patterns of diversity in this group of parasites, and that the effects of these factors can vary over different evolutionary scales. The integrative approach we employed was crucial for uncovering these patterns, and should be broadly applicable to other studies.


Asunto(s)
Enfermedades de las Aves/parasitología , Columbidae , Infestaciones Ectoparasitarias/veterinaria , Neoptera/clasificación , Neoptera/genética , Américas , Animales , Interacciones Huésped-Parásitos , Neoptera/fisiología , Filogeografía
13.
Ecol Evol ; 7(23): 9925-9934, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29238526

RESUMEN

The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012-2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between -38.4% and -51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

14.
Ecol Evol ; 7(9): 2956-2968, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28479995

RESUMEN

An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

15.
Mol Phylogenet Evol ; 103: 41-54, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27369453

RESUMEN

Species complexes that have undergone recent radiations are often characterized by extensive allele sharing due to recent ancestry and (or) introgressive hybridization. This can result in discordant evolutionary histories of genes and heterogeneous genomes, making delineating species limits difficult. Here we examine the phylogenetic relationships among a complex group of birds, the white-headed gulls (Aves: Laridae), which offer a unique window into the speciation process due to their recent evolutionary history and propensity to hybridize. Relationships were examined among 17 species (61 populations) using a multilocus approach, including mitochondrial and nuclear intron DNA sequences and microsatellite genotype information. Analyses of microsatellite and intron data resulted in some species-based groupings, although most species were not represented by a single cluster. Considerable allele and haplotype sharing among white-headed gull species was observed; no locus contained a species-specific clade. Despite this, our multilocus approach provided better resolution among some species than previous studies. Interestingly, most clades appear to correspond to geographic locality: our BEAST analysis recovered strong support for a northern European/Icelandic clade, a southern European/Russian clade, and a western North American/canus clade, with weak evidence for a high latitude clade spanning North America and northwestern Europe. This geographical structuring is concordant with behavioral observations of pervasive hybridization in areas of secondary contact. The extent of allele and haplotype sharing indicates that ecological and sexual selection are likely not strong enough to complete reproductive isolation within several species in the white-headed gull complex. This suggests that just a few genes are driving the speciation process.


Asunto(s)
Charadriiformes/clasificación , Hibridación Genética , Alelos , Animales , Evolución Biológica , Charadriiformes/genética , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Intrones , Repeticiones de Microsatélite/genética , Fosfopiruvato Hidratasa/genética , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Especificidad de la Especie
16.
Mol Ecol ; 25(3): 661-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26833858

RESUMEN

Estimating the frequency of hybridization is important to understand its evolutionary consequences and its effects on conservation efforts. In this study, we examined the extent of hybridization in two sister species of ducks that hybridize. We used mitochondrial control region sequences and 3589 double-digest restriction-associated DNA sequences (ddRADseq) to identify admixture between wild lesser scaup (Aythya affinis) and greater scaup (A. marila). Among 111 individuals, we found one introgressed mitochondrial DNA haplotype in lesser scaup and four in greater scaup. Likewise, based on the site-frequency spectrum from autosomal DNA, gene flow was asymmetrical, with higher rates from lesser into greater scaup. However, using ddRADseq nuclear DNA, all individuals were assigned to their respective species with >0.95 posterior assignment probability. To examine the power for detecting admixture, we simulated a breeding experiment in which empirical data were used to create F1 hybrids and nine generations (F2-F10) of backcrossing. F1 hybrids and F2, F3 and most F4 backcrosses were clearly distinguishable from pure individuals, but evidence of admixed histories was effectively lost after the fourth generation. Thus, we conclude that low interspecific assignment probabilities (0.011-0.043) for two lesser and nineteen greater scaup were consistent with admixed histories beyond the F3 generation. These results indicate that the propensity of these species to hybridize in the wild is low and largely asymmetric. When applied to species-specific cases, our approach offers powerful utility for examining concerns of hybridization in conservation efforts, especially for determining the generational time until admixed histories are effectively lost through backcrossing.


Asunto(s)
Patos/genética , Flujo Génico , Hibridación Genética , Animales , ADN Mitocondrial/genética , Patos/clasificación , Femenino , Genética de Población , Haplotipos , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
17.
PLoS Genet ; 11(12): e1005681, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26637114

RESUMEN

A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level.


Asunto(s)
Evolución Molecular , Hemoglobinas/genética , Globinas alfa/genética , Globinas beta/genética , Adaptación Fisiológica/genética , Altitud , Animales , Aves/sangre , Aves/genética , Aves/fisiología , Hemoglobinas/química , Oxígeno/metabolismo , Fenotipo , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN , Globinas alfa/química , Globinas alfa/metabolismo , Globinas beta/química , Globinas beta/metabolismo
18.
Mol Ecol ; 23(12): 2961-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24854419

RESUMEN

Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.


Asunto(s)
Patos/clasificación , Flujo Génico , Especiación Genética , Genética de Población , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Patos/genética , Haplotipos , Intrones , Datos de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN
19.
PLoS One ; 8(12): e82664, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367536

RESUMEN

Hybridization is common between species of animals, particularly in waterfowl (Anatidae). One factor shown to promote hybridization is restricted mate choice, which can occur when 2 species occur in sympatry but one is rare. According to the Hubbs principle, or "desperation hypothesis," the rarer species is more likely to mate with heterospecifics. We report the second of 2 independent examples of hybridization between 2 species of ducks inhabiting island ecosystems in the Subantarctic and South Atlantic Ocean. Yellow-billed pintails (Anas georgica) and speckled teal (Anas flavirostris) are abundant in continental South America, where they are sympatric and coexist in mixed flocks. But on South Georgia, an isolated island in the Subantarctic, the pintail population of approximately 6000 pairs outnumbers a small breeding population of speckled teal 300∶1. Using 6 genetic loci (mtDNA and 5 nuclear introns) and Bayesian assignment tests coupled with coalescent analyses, we identified hybrid-origin speckled teal alleles in 2 pintails on South Georgia. While it is unclear whether introgression has also occurred into the speckled teal population, our data suggest that this hybridization was not a recent event, but occurred some time ago. We also failed to identify unequivocal evidence of introgression in a much larger sample of pintails and speckled teal from Argentina using a 3-population "Isolation-with-Migration" coalescent analysis. Combined with parallel findings of hybridization between these same 2 duck species in the Falkland Islands, where population ratios are reversed and pintails are outnumbered by speckled teal 1:10, our results provide further support for the desperation hypothesis, which predicts that scarcity in one population and abundance of another will often lead to hybridization. While the South Georgia pintail population appears to be thriving, it's possible that low density of conspecific mates and inverse density dependence (Allee effect) may be one factor limiting the reproductive output of the speckled teal population, and this situation may persist unless speckled teal increase in abundance on South Georgia.


Asunto(s)
Patos/genética , Flujo Génico/genética , Hibridación Genética/genética , Animales , ADN Mitocondrial/genética , Patos/clasificación , Variación Genética/genética , Georgia , Islas
20.
Endoscopy ; 45(10): 799-805, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23897401

RESUMEN

BACKGROUND AND STUDY AIMS: Preliminary data suggested that simulation practice using an endoscopic retrograde cholangiopancreatography (ERCP) mechanical simulator (EMS) improved trainees' skill. The aims of the current study were to confirm the impact of coached EMS practice at the beginning of ERCP training and to investigate whether subsequent uncoached EMS practice provides additional benefit. METHODS: Trainees entering ERCP training in 2008 (n = 8) and 2009 (n = 8) at two referral medical centers were randomized to receive a coached EMS practice either with (2009) or without (2008) subsequent uncoached practices or only routine training (controls). The outcome measures were successful deep biliary cannulation by the trainee and overall performance score as rated by blinded trainers, during the subsequent 3 months of clinical practice. RESULTS: Trainees undergoing single and multiple EMS practices were more likely than controls to achieve successful biliary cannulation (single: adjusted odds ratio [aOR] 2.89, 95 % confidence interval [CI] 2.21 - 3.80 [P < 0.001]; multiple: 3.09, 95 %CI 1.13 - 8.46 [P = 0.028]) and to have superior overall performance scores (aOR 3.29, 95 %CI 1.37 - 7.91 [P = 0.008] and 6.92, 95 %CI 3.77 - 12.69 [P < 0.001], respectively). The benefit of single and multiple EMS practices on overall performance score remained significant after adjustment for success or failure of deep biliary cannulation (aOR 2.98, 95 %CI 1.38 - 6.43 [P = 0.005] and 6.09, 95 %CI 2.40 - 15.45 [P < 0.001], respectively). The benefits of single vs. multiple EMS practices were not statistically different. CONCLUSIONS: Coached simulation using EMS improved novice trainees' success of biliary cannulation and overall ERCP performance. Additional uncoached practices did not appear to provide further benefit. Trainees should undergo a coached EMS practice at the beginning of ERCP training.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Competencia Clínica , Educación de Postgrado en Medicina/métodos , Modelos Anatómicos , Enseñanza/métodos , Colangiopancreatografia Retrógrada Endoscópica/instrumentación , Colangiopancreatografia Retrógrada Endoscópica/normas , Humanos , Análisis de Intención de Tratar , Método Simple Ciego , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...