Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 2084, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483553

RESUMEN

The fusion power density produced in a tokamak is proportional to its magnetic field strength to the fourth power. Second-generation high temperature superconductor (2G HTS) wires demonstrate remarkable engineering current density (averaged over the full wire), JE, at very high magnetic fields, driving progress in fusion and other applications. The key challenge for HTS wires has been to offer an acceptable combination of high and consistent superconducting performance in high magnetic fields, high volume supply, and low price. Here we report a very high and reproducible JE in practical HTS wires based on a simple YBa2Cu3O7 (YBCO) superconductor formulation with Y2O3 nanoparticles, which have been delivered in just nine months to a commercial fusion customer in the largest-volume order the HTS industry has seen to date. We demonstrate a novel YBCO superconductor formulation without the c-axis correlated nano-columnar defects that are widely believed to be prerequisite for high in-field performance. The simplicity of this new formulation allows robust and scalable manufacturing, providing, for the first time, large volumes of consistently high performance wire, and the economies of scale necessary to lower HTS wire prices to a level acceptable for fusion and ultimately for the widespread commercial adoption of HTS.

2.
Sci Rep ; 9(1): 14245, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578391

RESUMEN

The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while others are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors and show quite generally that single-band weak-coupling p-wave superconductivity is exhibited in iron-based superconductors.

3.
Sci Rep ; 8(1): 14463, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262898

RESUMEN

Recently, we showed that the self-field transport critical current, Ic(sf), of a superconducting wire can be defined in a more fundamental way than the conventional (and arbitrary) electric field criterion, Ec = 1 µV/cm. We defined Ic(sf) as the threshold current, Ic,B, at which the perpendicular component of the local magnetic flux density, B⊥, measured at any point on the surface of a high-temperature superconducting tape abruptly crosses over from a non-linear to a linear dependence with increasing transport current. This effect results from the current distribution across the tape width progressively transitioning from non-uniform to uniform. The completion of this progressive transition was found to be singular. It coincides with the first discernible onset of dissipation and immediately precedes the formation of a measureable electric field. Here, we show that the same Ic,B definition of critical currents applies in the presence of an external applied magnetic field, Ba. In all experimental data presented here Ic,B is found to be significantly (10-30%) lower than Ic,E determined by the common electric field criterion of Ec = 1 µV/cm, and Ec to be up to 50 times lower at Ic,B than at Ic,E.

4.
Rev Sci Instrum ; 85(11): 113907, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430124

RESUMEN

A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.

5.
Nanotechnology ; 21(9): 095604, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20124663

RESUMEN

The striking influence of the growth kinetics and substrate enhanced surface mobility on the control of the self-assembly of rare earth tantalate particles (1.5 mol% of nanoparticles in YBa(2)Cu(3)O(7) thin films) is demonstrated. Strongly enhanced flux pinning, control of the anisotropy property and superior critical current densities were achieved. Owing to the unique ability to probe nanoparticle self-assembly through determination of the nature and extent of the anisotropy of the superconducting properties, this system serves as the perfect model system for understanding how to tune and control functional nanocomposite nanostructures for a wide range of multifunctional applications.

6.
Phys Rev Lett ; 96(24): 246404, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16907262

RESUMEN

The magnetic susceptibility and the electrical resistivity of n-type BaTi1-xNbxO3 have been measured over a wide temperature range. It is found that, for 0

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA