Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell Calcium ; 117: 102831, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995470

RESUMEN

Mutations in the small, calcium-sensing, protein calmodulin cause cardiac arrhythmia and can ultimately prove lethal. Here, we report the impact of the G113R variant on the structure and dynamics of the calmodulin molecule, both in the presence and in the absence of calcium. We show that the mutation introduces minor changes into the structure of calmodulin and that it changes the thermostability and thus the degree of foldedness at human body temperature. The mutation also severely impacts the intramolecular mobility of calmodulin, especially in the apo form. Glycine 113 acts as an alpha-helical C-capping residue in both apo/ - and Ca2+/calmodulin, but its exchange to arginine has very different effects on the apo and Ca2+ forms. The majority of arrhythmogenic calmodulin variants identified affects residues in the Ca2+ coordinating loops of the two C-domain EF-Hands, causing a 'direct impact on Ca2+ binding'. However, G113R lies outside a Ca2+ coordinating loop and acts differently and more similar to the previously characterized arrhythmogenic N53I. Therefore, we suggest that altered apo/CaM dynamics may be a novel general disease mechanism, defining low-calcium target affinity - or Ca2+ binding kinetics - critical for timely coordination of essential ion-channels in the excitation-contraction cycle.


Asunto(s)
Calcio , Calmodulina , Humanos , Calmodulina/metabolismo , Calcio/metabolismo , Mutación/genética , Arritmias Cardíacas , Estabilidad Proteica , Unión Proteica
2.
Front Fungal Biol ; 4: 1264366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025899

RESUMEN

As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.

3.
Front Pharmacol ; 14: 1210140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663247

RESUMEN

Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin (CaM) cause severe cardiac arrhythmias. The disease mechanisms have been attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS). Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her four children, all of whom died suddenly while asleep at a young age. The G114R variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild LQTS phenotype. However, the children carrying the CALM2 G114R variant displayed a phenotype commonly observed with variants in NaV1.5, i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common feature. We therefore hypothesized that the G114R variant specifically would interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W. The impact was most severe at low and intermediate Ca2+ concentrations (up to 4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25-400 µM). In contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction between NaV1.5 and CaM is decreased with certain CaM variants, which may alter the cardiac sodium current, INa. Overall, these results suggest that the phenotypic spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-like traits.

4.
Comput Struct Biotechnol J ; 21: 3715-3727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560124

RESUMEN

Accurate and absolute quantification of peptides in complex mixtures using quantitative mass spectrometry (MS)-based methods requires foreground knowledge and isotopically labeled standards, thereby increasing analytical expenses, time consumption, and labor, thus limiting the number of peptides that can be accurately quantified. This originates from differential ionization efficiency between peptides and thus, understanding the physicochemical properties that influence the ionization and response in MS analysis is essential for developing less restrictive label-free quantitative methods. Here, we used equimolar peptide pool repository data to develop a deep learning model capable of identifying amino acids influencing the MS1 response. By using an encoder-decoder with an attention mechanism and correlating attention weights with amino acid physicochemical properties, we obtain insight on properties governing the peptide-level MS1 response within the datasets. While the problem cannot be described by one single set of amino acids and properties, distinct patterns were reproducibly obtained. Properties are grouped in three main categories related to peptide hydrophobicity, charge, and structural propensities. Moreover, our model can predict MS1 intensity output under defined conditions based solely on peptide sequence input. Using a refined training dataset, the model predicted log-transformed peptide MS1 intensities with an average error of 9.7 ± 0.5% based on 5-fold cross validation, and outperformed random forest and ridge regression models on both log-transformed and real scale data. This work demonstrates how deep learning can facilitate identification of physicochemical properties influencing peptide MS1 responses, but also illustrates how sequence-based response prediction and label-free peptide-level quantification may impact future workflows within quantitative proteomics.

5.
Bioresour Technol ; 385: 129430, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37399952

RESUMEN

PBAT (poly butylene adipate-co-terephthalate) is a widely used biodegradable plastic, but the knowledge about its metabolization in anaerobic environments is very limited. In this study, the anaerobic digester sludge from a municipal wastewater treatment plant was used as inoculum to investigate the biodegradability of PBAT monomers in thermophilic conditions. The research employs a combination of 13C-labelled monomers and proteogenomics to track the labelled carbon and identify the microorganisms involved. A total of 122 labelled peptides of interest were identified for adipic acid (AA) and 1,4-butanedio (BD). Through the time-dependent isotopic enrichment and isotopic profile distributions, Bacteroides, Ichthyobacterium, and Methanosarcina were proven to be directly involved in the metabolization of at least one monomer. This study provides a first insight into the identity and genomic potential of microorganisms responsible for biodegradability of PBAT monomers during anaerobic digestion under thermophilic conditions.


Asunto(s)
Carbono , Poliésteres , Poliésteres/metabolismo , Anaerobiosis , Adipatos/química
6.
J Nat Prod ; 86(7): 1690-1697, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37411021

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that causes a wide range of infections. Its resistance to ß-lactam antibiotics complicates treatment due to the limited number of antibiotics with activity against MRSA. To investigate development of alternative therapeutics, the mechanisms that mediate antibiotic resistance in MRSA need to be fully understood. In this study, MRSA cells were subjected to antibiotic stress from methicillin in combination with three cannabinoid compounds and analyzed using proteomics to assess the changes in physiology. Subjecting MRSA to nonlethal levels of methicillin resulted in an increased production of penicillin-binding protein 2 (PBP2). Exposure to cannabinoids showed antibiotic activity against MRSA, and differential proteomics revealed reduced levels of proteins involved in the energy production as well as PBP2 when used in combination with methicillin.


Asunto(s)
Cannabinoides , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/metabolismo , Proteómica , Cannabinoides/química , Cannabinoides/farmacología
7.
Molecules ; 27(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056877

RESUMEN

Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. ß-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a ß-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the ß-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger ß-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of ß-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a ß-mannanase and would improve the return on investment.


Asunto(s)
beta-Manosidasa
8.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012550

RESUMEN

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fusarium/enzimología , Sintasas Poliquetidas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Xantonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas , Clonación Molecular , Fusarium/genética , Isoquinolinas/metabolismo , Modelos Moleculares , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Dominios Proteicos , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
9.
J Nat Prod ; 84(8): 2070-2080, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34292732

RESUMEN

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cß of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Péptido Sintasas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Biología Computacional , Proteínas Fúngicas/genética , Fusarium/genética , Estructura Molecular , Familia de Multigenes , Péptido Sintasas/genética , Triticum/microbiología
10.
Toxins (Basel) ; 13(6)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070644

RESUMEN

Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity.


Asunto(s)
Fusarium/metabolismo , Naftoquinonas/metabolismo , Policétidos/metabolismo , Medios de Cultivo , Isoquinolinas/metabolismo , Nitrógeno/metabolismo , Sacarosa/metabolismo
11.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34077221

RESUMEN

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Antiprotozoarios/farmacología , Bothrops , Venenos de Serpiente/química , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Antimicrobianos/química , Antiprotozoarios/química , Catelicidinas , Células Cultivadas , Leishmania/efectos de los fármacos , Macrófagos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , América del Sur
12.
J Cell Mol Med ; 25(11): 5191-5201, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949122

RESUMEN

Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.


Asunto(s)
Intoxicación por Monóxido de Carbono/diagnóstico , Monóxido de Carbono/análisis , Metaboloma , Animales , Intoxicación por Monóxido de Carbono/metabolismo , Femenino , Porcinos
13.
Metabolomics ; 17(2): 16, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495863

RESUMEN

INTRODUCTION: Chronic hepatitis B (CHB) affects 257 million individuals worldwide with an annual estimated mortality rate of 880,000 individuals. Accurate diagnosis of the stage of disease is difficult, and there is considerable uncertainty concerning the optimal point in time, when treatment should be started. OBJECTIVES: By analyzing and comparing the metabolomes of patients at different stages of CHB and comparing them to healthy individuals, we want to determine the metabolic signature of disease progression and develop a more accurate metabolome-based method for diagnosis of disease progression ultimately giving a better basis for treatment decisions. METHODS: In this study, we used the combination of transient elastography and serum metabolomics of 307 serum samples from a group of 90 patients with CHB before and under treatment (with a follow-up time up to 10 years) at different progression stages over the clinical phases and 43 healthy controls.. RESULTS: Our data show that the metabolomics approach can successfully discover CHB changing from the immune tolerance to the immune clearance phase and show distinctive metabolomes from different medical treatment stages. Perturbations in ammonia detoxification, glutamine and glutamate metabolism, methionine metabolism, dysregulation of branched-chain amino acids, and the tricarboxylic acid (TCA) cycle are the main factors involved in the progression of the disease. Fluctuations increasing in aspartate, glutamate, glutamine, methionine and 13 other metabolites are fingerprints of progression. CONCLUSIONS: The metabolomics approach may expand the diagnostic armamentarium for patients with CHB. This method can provide a more detailed decision basis for starting medical treatment.


Asunto(s)
Progresión de la Enfermedad , Hepatitis B Crónica/metabolismo , Metaboloma , Metabolómica/métodos , Biomarcadores/análisis , Dinamarca , Hepatitis B Crónica/diagnóstico , Humanos , Cirrosis Hepática , Análisis Multivariante
14.
Data Brief ; 33: 106567, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304964

RESUMEN

Serum, urine and tissue from a rat model of chronic kidney disease (CKD) were analysed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics methods, and compared with samples from sham operated rats. Both urine and serum were sampled at multiple timepoints, and the results have been reported elsewhere (https://doi.org/10.1007/s11306-019-1569-3[1]). The data could be useful to researchers working with human CKD or rat models of the disease. In addition, several different types of NMR spectra were recorded, including 1D NOESY, CPMG, and 2D J-resolved spectra, and the data could be useful for method comparison and algorithm development, both in terms of NMR spectroscopy and multivariate analysis.

15.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066643

RESUMEN

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Asunto(s)
Clonación Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Sintasas Poliquetidas/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Familia de Multigenes , Sintasas Poliquetidas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética
16.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723819

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Asunto(s)
Bacillus licheniformis/enzimología , Proteínas Bacterianas/química , Quitina/metabolismo , Oxigenasas de Función Mixta/química , Oxígeno/metabolismo , Bacillus licheniformis/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Quitina/química , Cobre/química , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Imagen por Resonancia Magnética , Oxigenasas de Función Mixta/metabolismo , Oxígeno/química , Especificidad por Sustrato
17.
Sci Data ; 7(1): 198, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581368

RESUMEN

Cardiovascular disease is the leading cause of death worldwide and cardiac surgery is a key treatment. This study explores metabolite changes as a consequence of ischemia-reperfusion due to cardiac surgery with the use of cardiopulmonary bypass (CPB). To describe the ischemia-reperfusion injury, metabolite changes were monitored in fifty patients before and after CPB at multiple time points. We describe a longitudinal metabolite dataset containing nearly 600 serum nuclear magnetic resonance (NMR) spectra obtained from samples collected simultaneously from the pulmonary artery (deoxygenated blood) and left atrium (oxygenated blood) before ischemia (pre-CPB), immediately after reperfusion (end-CPB), and the following 2, 4, 8, and 20 hours postoperatively. In addition, a longitudinal dataset including 57 quantified metabolites is also provided. These datasets will help researchers studying ischemia-reperfusion injury, as well as the time-dependent alterations related to the surgical trauma and the subsequent processes required in regaining metabolite balance. The datasets could also be used for the development of processing algorithms for NMR-based metabolomics studies and methods for the analysis of longitudinal multivariate data.


Asunto(s)
Puente Cardiopulmonar/efectos adversos , Metabolómica , Daño por Reperfusión/sangre , Humanos , Espectroscopía de Resonancia Magnética
18.
PLoS One ; 15(6): e0235568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32598376

RESUMEN

Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.


Asunto(s)
Cianoacrilatos/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Fungicidas Industriales/farmacología , Fusarium/crecimiento & desarrollo , Fusarium/efectos de los fármacos
19.
J Biol Chem ; 295(22): 7620-7634, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32317284

RESUMEN

Mutations in the genes encoding the highly conserved Ca2+-sensing protein calmodulin (CaM) cause severe cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia or long QT syndrome and sudden cardiac death. Most of the identified arrhythmogenic mutations reside in the C-terminal domain of CaM and mostly affect Ca2+-coordinating residues. One exception is the catecholaminergic polymorphic ventricular tachycardia-causing N53I substitution, which resides in the N-terminal domain (N-domain). It does not affect Ca2+ coordination and has only a minor impact on binding affinity toward Ca2+ and on other biophysical properties. Nevertheless, the N53I substitution dramatically affects CaM's ability to reduce the open probability of the cardiac ryanodine receptor (RyR2) while having no effect on the regulation of the plasmalemmal voltage-gated Ca2+ channel, Cav1.2. To gain more insight into the molecular disease mechanism of this mutant, we used NMR to investigate the structures and dynamics of both apo- and Ca2+-bound CaM-N53I in solution. We also solved the crystal structures of WT and N53I CaM in complex with the primary calmodulin-binding domain (CaMBD2) from RyR2 at 1.84-2.13 Å resolutions. We found that all structures of the arrhythmogenic CaM-N53I variant are highly similar to those of WT CaM. However, we noted that the N53I substitution exposes an additional hydrophobic surface and that the intramolecular dynamics of the protein are significantly altered such that they destabilize the CaM N-domain. We conclude that the N53I-induced changes alter the interaction of the CaM N-domain with RyR2 and thereby likely cause the arrhythmogenic phenotype of this mutation.


Asunto(s)
Arritmias Cardíacas , Calcio/química , Calmodulina/química , Calmodulina/genética , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/química , Sustitución de Aminoácidos , Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
20.
J Physiol ; 598(6): 1169-1186, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32012279

RESUMEN

KEY POINTS: Mutations in the calmodulin protein (CaM) are associated with arrhythmia syndromes. This study focuses on understanding the structural characteristics of CaM disease mutants and their interactions with the voltage-gated calcium channel CaV 1.2. Arrhythmia mutations in CaM can lead to loss of Ca2+ binding, uncoupling of Ca2+ binding cooperativity, misfolding of the EF-hands and altered affinity for the calcium channel. These results help us to understand how different CaM mutants have distinct effects on structure and interactions with protein targets to cause disease. ABSTRACT: Calmodulinopathies are life-threatening arrhythmia syndromes that arise from mutations in calmodulin (CaM), a calcium sensing protein whose sequence is completely conserved across all vertebrates. These mutations have been shown to interfere with the function of cardiac ion channels, including the voltage-gated Ca2+ channel CaV 1.2 and the ryanodine receptor (RyR2), in a mutation-specific manner. The ability of different CaM disease mutations to discriminate between these channels has been enigmatic. We present crystal structures of several C-terminal lobe mutants and an N-terminal lobe mutant in complex with the CaV 1.2 IQ domain, in conjunction with binding assays and complementary structural biology techniques. One mutation (D130G) causes a pathological conformation, with complete separation of EF-hands within the C-lobe and loss of Ca2+ binding in EF-hand 4. Another variant (Q136P) has severely reduced affinity for the IQ domain, and shows changes in the CD spectra under Ca2+ -saturating conditions when unbound to the IQ domain. Ca2+ binding to a pair of EF-hands normally proceeds with very high cooperativity, but we found that N98S CaM can adopt different conformations with either one or two Ca2+ ions bound to the C-lobe, possibly disrupting the cooperativity. An N-lobe variant (N54I), which causes severe stress-induced arrhythmia, does not show any major changes in complex with the IQ domain, providing a structural basis for why this mutant does not affect function of CaV 1.2. These findings show that different CaM mutants have distinct effects on both the CaM structure and interactions with protein targets, and act via distinct pathological mechanisms to cause disease.


Asunto(s)
Arritmias Cardíacas/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Calmodulina/genética , Humanos , Mutación , Unión Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...