Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
EFSA J ; 22(7): e8855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005713

RESUMEN

The EFSA Panel on Animal Health and Welfare (AHAW) was asked to deliver a scientific opinion on the use of high-expansion foam for stunning and killing pigs and poultry. A dossier was provided by the applicant as the basis for an assessment of the extent to which the method is able to provide a level of animal welfare at least equivalent to that ensured by the currently allowed methods for pigs and poultry. According to legislation, to be approved in the EU, new stunning methods must ensure (1) the absence of pain, distress or suffering until the onset of unconsciousness, and (2) that the animal remains unconscious until death. An ad hoc Working Group set up by EFSA performed the assessment as follows: (1) The data provided were checked against the criteria laid down in the EFSA Guidance (EFSA, 2018), and was found to partially fulfil those criteria; (2) extensive literature search; (3) data extraction for quantitative assessment; (4) qualitative exercise based on non-formal expert elicitation. The assessment led to conclude that it is more likely than not (certainty > 50%-100%) that high-expansion foam for stunning and killing pigs and poultry, named NEFS in container (Nitrogen Expansion Foam Stunning in container), provides a level of welfare at least equivalent to one or more of the currently allowed methods listed in Annex I of Council Regulation (EC) No 1099/2009. The overall assessment of EFSA is valid only under the technical conditions described in this Opinion for laying hens, broiler chickens of all age and pigs weighing 15-41 kg in situations other than slaughter. The overall assessment of EFSA is that NEFS can be suitable for depopulation using containers for pig and poultry farms respecting the technical conditions and the categories and types of animals defined in this Scientific Opinion.

2.
EFSA J ; 22(6): e8835, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933535

RESUMEN

Sheep and goats of different ages may have to be killed on-farm for purposes other than slaughter (where slaughter is defined as killing for human consumption) either individually (i.e. on-farm killing of unproductive, injured or terminally ill animals) or on a large scale (i.e. depopulation for disease control purposes and for other situations, such as environmental contamination and disaster management) outside the slaughterhouses. The purpose of this opinion was to assess the hazards and welfare consequences associated with the on-farm killing of sheep and goats. The whole killing procedure was divided into Phase 1 (pre-killing) - that included the processes (i) handling and moving the animals to the killing place and (ii) restraint of the animals before application of the killing methods and Phase 2 - that included stunning and killing of the animals. The killing methods for sheep and goats were grouped into three categories: (1) mechanical, (2) electrical and (3) lethal injection. Welfare consequences that sheep and goats may experience during each process were identified (e.g. handling stress, restriction of movements and tissue lesions during restraint) and animal-based measures (ABMs) to assess them were proposed. During application of the killing method, sheep and goats will experience pain and fear if they are ineffectively stunned or if they recover consciousness. ABMs related to the state of consciousness can be used to indirectly assess pain and fear. Flowcharts including ABMs for consciousness specific to each killing method were included in the opinion. Possible welfare hazards were identified for each process, together with their origin and related preventive and corrective measures. Outcome tables linking hazards, welfare consequences, ABMs, origins, preventive and corrective measures were developed for each process. Mitigation measures to minimise welfare consequences were proposed.

3.
Poult Sci ; 103(8): 103906, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38880049

RESUMEN

Pasture access allows broilers to perform a wide range of behaviors and is a prerequisite in organic poultry production, but exposes broilers to various potential hazards including predators. Co-grazing broilers with cattle can reduce land use and could offer protection from avian predation. Thus, we aimed to assess the effects of co-grazing on broiler losses, range use, performance, contact dermatitis and broilers' manipulation of cow pats. To this end, across 5 replicates we compared each a treatment group of 54 to 61 broilers co-grazing with 10 young cattle and a similar sized control group of broilers on a pasture which had been grazed by cattle 2 weeks prior. Broilers had pasture access during civil daylight and were locked in the coop overnight. Continuous video recordings of the pastures were used to identify the cause when broilers were missing or found dead. On 2 days per week in 4 replicates, broiler distribution in the pasture and maintenance behaviour (i.e. foraging, standing, lying, locomotion) were observed directly using instantaneous scan sampling. Based on the broilers' distance to the coop we calculated a group Ranging Distance Index (RDI). Cow pats were assessed weekly and contact dermatitis was scored before slaughter. Broilers in the treatment groups ranged further (p = 0.003) and higher percentages of birds tended to be outside (p = 0.09) compared to the control groups. Broiler losses due to predatory birds were consistently lower in treatment (median, range: 1, 0 to 3) than in control groups (3, 2 to 5, p = 0.025). Live weight before slaughter was slightly higher (p = 0.035) in treatment groups than in control groups. Feed conversion ratio (p = 0.174), maintenance behaviors and prevalence of contact dermatitis were not affected. No manipulation of cow pats by broilers was found or observed. Overall, co-grazing with cattle positively affected broiler range use, losses due to avian predation and weight gain.

4.
EFSA J ; 22(4): e8755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638555

RESUMEN

Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.

5.
Animal ; 18(3): 101093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377810

RESUMEN

The nutritional requirements of sows change during lactation and thus require adapted and dynamic feeding regimes that consider the sows' behavioral needs and production traits. The present study evaluated the effect of four different feeding systems on productivity and aspects of the welfare of 61 sows and their piglets during lactation. A non-ad libitum system (CON) was compared with two computer-monitored (COMP, COMP + ) ad libitum feeding systems, that allowed sows to access feed via displacement of an electronic sensor, as well as a third purely mechanical ad libitum feeding system (MECH). Daily feed disappearance, piglet growth, piglet growth per feed disappearance as well as sows' weight and conception rate were recorded. Health indicators of sows and piglets were scored as well as sow behavior analyzed for a total of 96 hours/sow from video recordings taken on days 2-4 and 23 postfarrowing (n = 35 sows). Sows from all three ad libitum systems (COMP, COMP+, MECH) showed a lower feed disappearance than CON (P < 0.01). Additionally, average daily piglet growth tended to be higher (P = 0.05) and piglet growth per sow feed disappearance was significantly higher in all three ad libitum systems than in CON (P < 0.01). Piglet mortality, sow weight loss and subsequent conception rates did not differ between treatment groups. Piglets in COMP and COMP + had fewer head lesions (P = 0.01). Sows in all three ad libitum systems spent more time with their head in the trough than in the non-ad libitum system (P < 0.01). Occurrence of sow stereotypies (vacuum chewing, biting fixtures) was rare (typically < 2% of scans) and did not differ between treatments. Our data suggest that sows fed ad libitum eat what they need and can convert feed more efficiently into the piglets' growth without additional weight loss. Furthermore, the increased time sows spent in ad libitum systems with their head in the trough points toward longer feeding times, which might be beneficial in terms of meeting pigs' behavioral need to forage. Taken together, our initial studies on sow feeding behavior and feed efficiency will benefit the development of new lactation feeding systems that promise to improve animal welfare and productivity while reducing feed costs.


Asunto(s)
Lactancia , Pérdida de Peso , Animales , Porcinos , Femenino , Conducta Alimentaria , Fertilización , Masticación , Alimentación Animal/análisis
6.
J Dairy Sci ; 107(6): 3941-3958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246554

RESUMEN

On-farm welfare assessment is time-consuming and costly. Assessing welfare using routinely collected herd data has been proposed as a more economical alternative. The online Animal Welfare Indicator (AWI), developed by a Norwegian dairy cooperative, applies an algorithm to routinely collected health, production, and management data to "indicate" aspects of animal welfare at herd level. The overall AWI score is based on 10 AWI subindicator scores, representative of elements of animal welfare such as claw health, udder health, and mortality. Our cross-sectional study explored 2 ways in which the AWI may enable more efficient welfare assessment of Norwegian dairy herds. First, we investigated using the AWI to reduce the duration of on-farm assessments by replacing on-farm measures. Second, we examined reducing the number of on-farm welfare assessments by using the AWI to predict which herds have poorer welfare with respect to specific on-farm measures. Using Spearman rank analyses, we investigated if the AWI scores for 157 herds were associated with 24 on-farm welfare variables measured contemporaneously by Welfare Quality assessment. The mortality AWI subindicator score and the percentage mortality in the previous 12 mo were moderately correlated, as were the udder health AWI subindicator score and the percentage high somatic cell count (SCC) in the previous 3 recordings. Only negligible or weak correlations were found between the other AWI scores and the on-farm assessment variables. We built Generalized Linear Models using AWI scores as independent variables to predict herds with poorer welfare. Herds were classified as having poorer welfare based on their results in specific on-farm welfare measures. We evaluated the models' predictive ability and accuracy. Moderately accurate models were built for predicting poorer herds with respect to high SCC, mortality, and moderate or severe lameness. The other models were less accurate. The AWI scores were generally unsuitable as replacements of on-farm welfare measures. The AWI subindicators for udder health and mortality could replace the on-farm welfare measures related to those 2 topics, but there was some overlap in the data used to calculate them. Despite a lack of independence, the use of those 2 AWI subindicators may marginally reduce the duration of on-farm assessments. A prediction model based on AWI scores showed potential for identifying herds with poorer welfare in terms of moderate or severe lameness, facilitating more efficient use of resources for on-farm lameness assessment. As a consequence of the data used in the AWI, it was only reflective of health-related welfare outcomes.


Asunto(s)
Algoritmos , Bienestar del Animal , Industria Lechera , Animales , Bovinos , Femenino , Estudios Transversales
7.
EFSA J ; 21(10): e08325, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908442

RESUMEN

Infection with Gyrodactylus salaris was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid down in Article 9 and Article 8 for listing animal species related to infection with G. salaris. The assessment was performed following the ad hoc method for data collection and assessment previously developed by AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether infection with G. salaris can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33-70% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that Infection with G. salaris does not meet the criteria in Section 1 and 3 (Category A and C; 1-5% and 10-33% probability of fulfilling the criteria, respectively) and it is uncertain whether it meets the criteria in Sections 2, 4 and 5 (Categories B, D and E; 33-80%, 33-66% and 33-80% probability of meeting the criteria, respectively). The animal species to be listed for infection with G. salaris according to Article 8 criteria are provided.

8.
EFSA J ; 21(10): e08326, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908448

RESUMEN

Bacterial kidney disease (BKD) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to BKD. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to this assessment, BKD can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (66-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that BKD does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-5%, 33-66% and 33-66% probability of meeting the criteria, respectively) but meets the criteria in Sections 4 and 5 (Categories D and E; 66-90% and 66-90% probability of meeting the criteria, respectively). The animal species to be listed for BKD according to Article 8 criteria are provided.

9.
EFSA J ; 21(10): e08327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908450

RESUMEN

Infection with salmonid alphavirus (SAV) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to infection with SAV. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment, it was uncertain whether infection with salmonid alphavirus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-80% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that infection with salmonid alphavirus does not meet the criteria in Section 1 (Category A; 5-10% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 50-90%, probability of meeting the criteria). The animal species to be listed for infection with SAV according to Article 8 criteria are provided.

10.
EFSA J ; 21(10): e08324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908451

RESUMEN

Spring Viraemia of Carp (SVC) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to SVC. The assessment was performed following the ad hoc method for data collection and assessment previously developed by the AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment performed here, it is uncertain whether SVC can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (45-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that SVC does not meet the criteria in Section 1 (Category A; 5-33% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 10-66%, 45-90% and 45-90% probability of meeting the criteria, respectively). The animal species to be listed for SVC according to Article 8 criteria are provided.

11.
EFSA J ; 21(10): e08271, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822713

RESUMEN

Several vaccines have been developed against highly pathogenic avian influenza (HPAI), mostly inactivated whole-virus vaccines for chickens. In the EU, one vaccine is authorised in chickens but is not fully efficacious to stop transmission, highlighting the need for vaccines tailored to diverse poultry species and production types. Off-label use of vaccines is possible, but effectiveness varies. Vaccines are usually injectable, a time-consuming process. Mass-application vaccines outside hatcheries remain rare. First vaccination varies from in-ovo to 6 weeks of age. Data about immunity onset and duration in the target species are often unavailable, despite being key for effective planning. Minimising antigenic distance between vaccines and field strains is essential, requiring rapid updates of vaccines to match circulating strains. Generating harmonised vaccine efficacy data showing vaccine ability to reduce transmission is crucial and this ability should be also assessed in field trials. Planning vaccination requires selecting the most adequate vaccine type and vaccination scheme. Emergency protective vaccination is limited to vaccines that are not restricted by species, age or pre-existing vector-immunity, while preventive vaccination should prioritise achieving the highest protection, especially for the most susceptible species in high-risk transmission areas. Model simulations in France, Italy and The Netherlands revealed that (i) duck and turkey farms are more infectious than chickens, (ii) depopulating infected farms only showed limitations in controlling disease spread, while 1-km ring-culling performed better than or similar to emergency preventive ring-vaccination scenarios, although with the highest number of depopulated farms, (iii) preventive vaccination of the most susceptible species in high-risk transmission areas was the best option to minimise the outbreaks' number and duration, (iv) during outbreaks in such areas, emergency protective vaccination in a 3-km radius was more effective than 1- and 10-km radius. Vaccine efficacy should be monitored and complement other surveillance and preventive efforts.

12.
EFSA J ; 21(8): e08173, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533748

RESUMEN

Vector or reservoir species of five mollusc diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Mollusc species on or in which Mikrocytos mackini, Perkinsus marinus, Bonamia exitiosa, Bonamia ostreae and Marteilia refringens were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, this studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected molluscs was not found, these were defined as reservoir. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir mollusc species during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that M. mackini, P. marinus, B. exitiosa B. ostreae and M. refringens will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or at aquaculture establishments or through contaminated water supply can possibly transmit these pathogens. For transmission of M. refringens, the presence of an intermediate host, a copepod, is necessary.

13.
EFSA J ; 21(8): e08172, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533749

RESUMEN

Vector or reservoir species of three diseases of crustaceans listed in the Animal Health Law were identified based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Crustacean species on or in which Taura syndrome virus (TSV), Yellow head virus (YHV) or White spot syndrome virus (WSSV) were identified, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected crustaceans was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that WSSV, TSV and YHV will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or aquaculture establishments or by water supply can possibly transmit WSSV, TSV and YHV.

14.
EFSA J ; 21(8): e08174, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533750

RESUMEN

Vector or reservoir species of five fish diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review (ELR), to support a possible updating of Regulation (EU) 2018/1882. Fish species on or in which highly polymorphic region-deleted infectious salmon anaemia virus (HPR∆ ISAV), Koi herpes virus (KHV), epizootic haematopoietic necrosis virus (EHNV), infectious haematopoietic necrosis virus (IHNV) or viral haemorrhagic septicaemia virus (VHSV) were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms or reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected fish was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir fish species during transport was collected from scientific literature. For VHSV, IHNV or HPR∆ ISAV, it was concluded that under transport conditions at temperatures below 25°C, it is likely (66-90%) they will remain infective. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild, aquaculture establishments or through water supply can possibly transmit VHSV, IHNV or HPR∆ ISAV into a non-affected area when transported at a temperature below 25°C. The conclusion was the same for EHN and KHV; however, they are likely to remain infective under all transport temperatures.

15.
Front Vet Sci ; 10: 1213749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323843

RESUMEN

[This corrects the article DOI: 10.3389/fvets.2023.1125860.].

16.
EFSA J ; 21(6): e08028, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313317

RESUMEN

Infectious pancreatic necrosis (IPN) was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to IPN. The assessment was performed following a methodology previously published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether IPN can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that IPN does not meet the criteria in Section 1 (Category A; 0-1% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 33-66%, 50-90% and 50-99% probability of meeting the criteria, respectively). The animal species to be listed for IPN according to Article 8 criteria are provided.

17.
EFSA J ; 21(5): e07992, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37200855

RESUMEN

This Scientific Opinion concerns the welfare of Domestic ducks (Anas platyrhynchos domesticus), Muscovy ducks (Cairina moschata domesticus) and their hybrids (Mule ducks), Domestic geese (Anser anser f. domesticus) and Japanese quail (Coturnix japonica) in relation to the rearing of breeders, birds for meat, Muscovy and Mule ducks and Domestic geese for foie gras and layer Japanese quail for egg production. The most common husbandry systems (HSs) in the European Union are described for each animal species and category. The following welfare consequences are described and assessed for each species: restriction of movement, injuries (bone lesions including fractures and dislocations, soft tissue lesions and integument damage and locomotory disorders including lameness), group stress, inability to perform comfort behaviour, inability to perform exploratory or foraging behaviour and inability to express maternal behaviour (related to prelaying and nesting behaviours). Animal-based measures relevant for the assessment of these welfare consequences were identified and described. The relevant hazards leading to the welfare consequences in the different HSs were identified. Specific factors such as space allowance (including minimum enclosure area and height) per bird, group size, floor quality, characteristics of nesting facilities and enrichment provided (including access to water to fulfil biological needs) were assessed in relation to the welfare consequences and, recommendations on how to prevent the welfare consequences were provided in a quantitative or qualitative way.

18.
EFSA J ; 21(5): e07993, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37200854

RESUMEN

This Scientific Opinion addresses a European Commission's mandate on the welfare of dairy cows as part of the Farm to Fork strategy. It includes three assessments carried out based on literature reviews and complemented by expert opinion. Assessment 1 describes the most prevalent housing systems for dairy cows in Europe: tie-stalls, cubicle housing, open-bedded systems and systems with access to an outdoor area. Per each system, the scientific opinion describes the distribution in the EU and assesses the main strengths, weaknesses and hazards potentially reducing the welfare of dairy cows. Assessment 2 addresses five welfare consequences as requested in the mandate: locomotory disorders (including lameness), mastitis, restriction of movement and resting problems, inability to perform comfort behaviour and metabolic disorders. Per each welfare consequence, a set of animal-based measures is suggested, a detailed analysis of the prevalence in different housing systems is provided, and subsequently, a comparison of the housing systems is given. Common and specific system-related hazards as well as management-related hazards and respective preventive measures are investigated. Assessment 3 includes an analysis of farm characteristics (e.g. milk yield, herd size) that could be used to classify the level of on-farm welfare. From the available scientific literature, it was not possible to derive relevant associations between available farm data and cow welfare. Therefore, an approach based on expert knowledge elicitation (EKE) was developed. The EKE resulted in the identification of five farm characteristics (more than one cow per cubicle at maximum stocking density, limited space for cows, inappropriate cubicle size, high on-farm mortality and farms with less than 2 months access to pasture). If one or more of these farm characteristics are present, it is recommended to conduct an assessment of cow welfare on the farm in question using animal-based measures for specified welfare consequences.

19.
EFSA J ; 21(3): e07896, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37009444

RESUMEN

This Scientific Opinion addresses a European Commission request on the welfare of calves as part of the Farm to Fork strategy. EFSA was asked to provide a description of common husbandry systems and related welfare consequences, as well as measures to prevent or mitigate the hazards leading to them. In addition, recommendations on three specific issues were requested: welfare of calves reared for white veal (space, group housing, requirements of iron and fibre); risk of limited cow-calf contact; and animal-based measures (ABMs) to monitor on-farm welfare in slaughterhouses. The methodology developed by EFSA to address similar requests was followed. Fifteen highly relevant welfare consequences were identified, with respiratory disorders, inability to perform exploratory or foraging behaviour, gastroenteric disorders and group stress being the most frequent across husbandry systems. Recommendations to improve the welfare of calves include increasing space allowance, keeping calves in stable groups from an early age, ensuring good colostrum management and increasing the amounts of milk fed to dairy calves. In addition, calves should be provided with deformable lying surfaces, water via an open surface and long-cut roughage in racks. Regarding specific recommendations for veal systems, calves should be kept in small groups (2-7 animals) within the first week of life, provided with ~ 20 m2/calf and fed on average 1 kg neutral detergent fibre (NDF) per day, preferably using long-cut hay. Recommendations on cow-calf contact include keeping the calf with the dam for a minimum of 1 day post-partum. Longer contact should progressively be implemented, but research is needed to guide this implementation in practice. The ABMs body condition, carcass condemnations, abomasal lesions, lung lesions, carcass colour and bursa swelling may be collected in slaughterhouses to monitor on-farm welfare but should be complemented with behavioural ABMs collected on farm.

20.
Front Vet Sci ; 10: 1125860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908518

RESUMEN

Introduction: Knowing the national status of animal welfare, one can identify welfare problems and set a benchmark against which improvements can be compared. Such a status is potentially invaluable for tangible, sustained animal welfare improvement. The objective of this cross-sectional study was to report the status of animal welfare in Norwegian loose-housed dairy herds as assessed using the Welfare Quality® Assessment Protocol. Additionally, we investigated if the welfare status varied on a regional basis. Methods: In total, 155 herds in eight of Norway's eleven counties were assessed by six trained Welfare Quality® assessors. This article presents the herd prevalences of common welfare issues in dairy production in Norway, as well as integrated welfare scores. To determine whether welfare status varied regionally in Norway, generalized linear modeling was used to estimate the mean welfare score for five regions in the four Welfare Quality® principles: A. Good feeding, B. Good housing, C. Good health, and D. Appropriate behavior. These estimated mean welfare scores and their 95% confidence intervals were subsequently assessed for significant variation. Results: Encouraging findings included the low mean herd prevalence of 'very lean' cows (3.0%) and the high proportion of cows (59.8%) which could be touched during avoidance distance testing, indicating a positive relationship between stockpeople and their cattle. Challenges affecting the welfare of Norwegian dairy cows were also identified. Of particular concern were issues related to the cows' environment such as prolonged times needed to complete lying down movements and integument alterations. No herd was completely free of changes to the integument and, on average, 77.9% of each herd were affected either mildly or severely. Animal welfare did not appear to vary much between the five regions assessed. Our investigation revealed significant regional variation between two regions (Trøndelag and Vestlandet North) in only the Welfare Quality® principle Good housing (p < 0.01). Discussion: The almost complete absence of regional variation demonstrates that animal welfare status generally varies most at herd level. In conclusion, both welfare challenges and encouraging findings were identified in loose-housed Norwegian dairy herds. To improve animal welfare, herd-specific interventions are most likely to be effective in these herds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA