Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538940

RESUMEN

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Proc Natl Acad Sci U S A ; 119(47): e2206085119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36399546

RESUMEN

The input of the soluble micronutrients iron (Fe) and/or manganese (Mn) by mineral dust stimulates net primary productivity in the Fe/Mn-deficient Southern Ocean. This mechanism is thought to increase carbon export, thus reducing atmospheric CO2 during the Pleistocene glacial cycles. Yet, relatively little is known about changes in the sources and transport pathways of Southern Hemisphere dust over glacial cycles. Here, we use the geochemical fingerprint of the dust fraction in marine sediments and multiisotope mixture modeling to identify changes in dust transport to the South Pacific Subantarctic Zone (SAZ). Our data show that dust from South America dominated the South Pacific SAZ during most of the last 260,000 a with maximum contributions of up to ∼70% in the early part of the glacial cycles. The enhanced dust-Fe fluxes of the latter parts of the glacial cycles show increased contributions from Australia and New Zealand, but South American dust remains the dominant component. The systematic changes in dust provenance correspond with grain size variations, consistent with the circumpolar transport of dust by the westerly winds. Maximum contributions of dust from more proximal sources in Australia and New Zealand (up to ∼63%) paired with a finer dust grain size indicate reduced westerly wind speeds over the South Pacific SAZ during deglacial and peak interglacial intervals. These quantitative dust provenance changes provide source-specific dust-Fe fluxes in the South Pacific SAZ and show how their systematic changes in magnitude and timing influence the Southern Ocean dust-Fe feedback on glacial-interglacial to millennial time scales.


Asunto(s)
Polvo , Agua de Mar , Océano Pacífico , Polvo/análisis , Atmósfera , Hierro/análisis
3.
Nat Commun ; 13(1): 3552, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729104

RESUMEN

Savanna ecosystems were the landscapes for human evolution and are vital to modern Sub-Saharan African food security, yet the fundamental drivers of climate and ecology in these ecosystems remain unclear. Here we generate plant-wax isotope and dust flux records to explore the mechanistic drivers of the Northwest African monsoon, and to assess ecosystem responses to changes in monsoon rainfall and atmospheric pCO2. We show that monsoon rainfall is controlled by low-latitude insolation gradients and that while increases in precipitation are associated with expansion of grasslands into desert landscapes, changes in pCO2 predominantly drive the C3/C4 composition of savanna ecosystems.


Asunto(s)
Clima , Ecosistema , Humanos , Plantas
4.
Nat Commun ; 12(1): 2667, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976163

RESUMEN

Chemical events involving deep carbon- and water-rich fluids impact the continental lithosphere over its history. Diamonds are a by-product of such episodic fluid infiltrations, and entrapment of these fluids as microinclusions in lithospheric diamonds provide unique opportunities to investigate their nature. However, until now, direct constraints on the timing of such events have not been available. Here we report three alteration events in the southwest Kaapvaal lithosphere using U-Th-He geochronology of fluid-bearing diamonds, and constrain the upper limit of He diffusivity (to D ≈ 1.8 × 10-19 cm2 s-1), thus providing a means to directly place both upper and lower age limits on these alteration episodes. The youngest, during the Cretaceous, involved highly saline fluids, indicating a relationship with late-Mesozoic kimberlite eruptions. Remnants of two preceding events, by a Paleozoic silicic fluid and a Proterozoic carbonatitic fluid, are also encapsulated in Kaapvaal diamonds and are likely coeval with major surface tectonic events (e.g. the Damara and Namaqua-Natal orogenies).

5.
Nature ; 589(7840): 70-75, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408375

RESUMEN

The prevailing mid-latitude westerly winds, known as the westerlies, are a fundamental component of the climate system because they have a crucial role in driving surface ocean circulation1 and modulating air-sea heat, momentum and carbon exchange1-3. Recent work suggests that westerly wind belts are migrating polewards in response to anthropogenic forcing4,5. Reconstructing the westerlies during past warm periods such as the Pliocene epoch, in which atmospheric carbon dioxide (CO2) was about 350 to 450 parts per million6 and temperatures were about 2 to 4 degrees Celsius higher than today7, can improve our understanding of changes in the position and strength of these wind systems as the climate continues to warm. Here we show that the westerlies were weaker and more poleward during the warm Pliocene than during glacial periods after the intensification of Northern Hemisphere glaciation (iNHG), which occurred around 2.73 million years ago8. Our results, which are based on dust and export productivity reconstructions, indicate that major ice sheet development during the iNHG was accompanied by substantial increases in dust fluxes in the mid-latitude North Pacific Ocean, especially compared to those in the subarctic North Pacific. Following this shift, changes in dust and productivity largely track the glacial-interglacial cycles of the late Pliocene and early Pleistocene epochs. On the basis of this pattern, we infer that shifts in the westerlies were primarily driven by variations in Plio-Pleistocene thermal gradients and ice volume. By combining this relationship with other dust records9-11 and climate modelling results12, we find that the proposed changes in the westerlies were globally synchronous. If the Pliocene is predictive of future warming, we posit that continued poleward movement and weakening of the present-day westerlies in both hemispheres can be expected.

6.
Nat Commun ; 11(1): 5655, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168803

RESUMEN

The increased flux of soluble iron (Fe) to the Fe-deficient Southern Ocean by atmospheric dust is considered to have stimulated the net primary production and carbon export, thus promoting atmospheric CO2 drawdown during glacial periods. Yet, little is known about the sources and transport pathways of Southern Hemisphere dust during the Last Glacial Maximum (LGM). Here we show that Central South America (~24‒32°S) contributed up to ~80% of the dust deposition in the South Pacific Subantarctic Zone via efficient circum-Antarctic dust transport during the LGM, whereas the Antarctic Zone was dominated by dust from Australia. This pattern is in contrast to the modern/Holocene pattern, when South Pacific dust fluxes are thought to be primarily supported by Australian sources. Our findings reveal that in the glacial Southern Ocean, Fe fertilization critically relies on the dynamic interaction of changes in dust-Fe sources in Central South America with the circumpolar westerly wind system.

7.
Nat Commun ; 11(1): 96, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900389

RESUMEN

The accurate characterization of near-surface winds is critical to our understanding of past and modern climate. Dust lofted by these winds has the potential to modify surface and atmospheric conditions as well as ocean biogeochemistry. Stony deserts, low dust emitting regions today, represent expansive areas where variations in surficial geology through time may drastically impact near-surface conditions. Here we use the Weather Research and Forecasting (WRF) model over the western Gobi Desert to demonstrate a previously undocumented process between wind-driven landscape evolution and boundary layer conditions. Our results show that altered surficial thermal properties through winnowing of fine-grained sediments and formation of low-albedo gravel-mantled surfaces leads to an increase in near-surface winds by up to 25%; paradoxically, wind erosion results in faster winds regionally. This wind-albedo-wind feedback also leads to an increase in the frequency of hours spent at higher wind speeds, which has implications for dust emission potential.

8.
Nat Commun ; 10(1): 4494, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582753

RESUMEN

Accurate estimates of the past extent of the Greenland ice sheet provide critical constraints for ice sheet models used to determine Greenland's response to climate forcing and contribution to global sea level. Here we use a continuous ice core dust record from the Renland ice cap on the east coast of Greenland to constrain the timing of changes to the ice sheet margin and relative sea level over the last glacial cycle. During the Holocene and the previous interglacial period (Eemian) the dust record was dominated by coarse particles consistent with rock samples from central East Greenland. From the coarse particle concentration record we infer the East Greenland ice sheet margin advanced from 113.4 ± 0.4 to 111.0 ± 0.4 ka BP during the glacial onset and retreated from 12.1 ± 0.1 to 9.0 ± 0.1 ka BP during the last deglaciation. These findings constrain the possible response of the Greenland ice sheet to climate forcings.

9.
Proc Natl Acad Sci U S A ; 115(44): 11180-11185, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30322933

RESUMEN

Changes in bioavailable dust-borne iron (Fe) supply to the iron-limited Southern Ocean may influence climate by modulating phytoplankton growth and CO2 fixation into organic matter that is exported to the deep ocean. The chemical form (speciation) of Fe impacts its bioavailability, and glacial weathering produces highly labile and bioavailable Fe minerals in modern dust sources. However, the speciation of dust-borne Fe reaching the iron-limited Southern Ocean on glacial-interglacial timescales is unknown, and its impact on the bioavailable iron supply over geologic time has not been quantified. Here we use X-ray absorption spectroscopy on subantarctic South Atlantic and South Pacific marine sediments to reconstruct dust-borne Fe speciation over the last glacial cycle, and determine the impact of glacial activity and glaciogenic dust sources on bioavailable Fe supply. We show that the Fe(II) content, as a percentage of total dust-borne Fe, increases from ∼5 to 10% in interglacial periods to ∼25 to 45% in glacial periods. Consequently, the highly bioavailable Fe(II) flux increases by a factor of ∼15 to 20 in glacial periods compared with the current interglacial, whereas the total Fe flux increases only by a factor of ∼3 to 5. The change in Fe speciation is dominated by primary Fe(II) silicates characteristic of glaciogenic dust. Our results suggest that glacial physical weathering increases the proportion of highly bioavailable Fe(II) in dust that reaches the subantarctic Southern Ocean in glacial periods, which represents a positive feedback between glacial activity and cold glacial temperatures.


Asunto(s)
Polvo/análisis , Hierro/química , Fitoplancton/crecimiento & desarrollo , Atmósfera/química , Dióxido de Carbono/química , Clima , Sedimentos Geológicos/química , Cubierta de Hielo/química , Minerales/química , Océanos y Mares , Agua de Mar/química , Temperatura
10.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874529

RESUMEN

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

11.
Sci Adv ; 3(6): e1700314, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28691098

RESUMEN

Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe') dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods.


Asunto(s)
Diatomeas , Polvo/análisis , Compuestos Ferrosos/química , Cubierta de Hielo/química , Material Particulado/análisis , Geografía , Sedimentos Geológicos/química , Hierro/química
12.
Sci Rep ; 7: 41433, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139676

RESUMEN

We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20-30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment.

13.
Proc Natl Acad Sci U S A ; 113(22): 6119-24, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185933

RESUMEN

Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.


Asunto(s)
Arqueología , Evolución Biológica , Polvo/análisis , Sedimentos Geológicos/análisis , Biología Marina , Agua de Mar/análisis , Océano Pacífico , Fitoplancton
14.
Sci Adv ; 1(9): e1500456, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26601287

RESUMEN

Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet, evidence for the generation and impact of collapse-triggered megatsunamis and their high run-ups remains scarce or is highly controversial. Therefore, doubts remain on whether island flank failures truly generate enough volume flux to trigger giant tsunamis, leading to diverging opinions concerning the real hazard potential of such collapses. We show that one of the most prominent oceanic volcanoes on Earth-Fogo, in the Cape Verde Islands-catastrophically collapsed and triggered a megatsunami with devastating effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic (3)He dating of tsunamigenic deposits found on nearby Santiago Island, which attest to the impact of this giant tsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo's flank failure involved at least one fast and voluminous event that led to a giant tsunami, in contrast to what has been suggested before. Our observations therefore further demonstrate that flank collapses may indeed catastrophically happen and are capable of triggering tsunamis of enormous height and energy, adding to their hazard potential.

15.
Proc Natl Acad Sci U S A ; 111(17): 6215-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733909

RESUMEN

The Younger Dryas Stadial (YDS; ∼ 12,900-11,600 y ago) in the Northern Hemisphere is classically defined by abrupt cooling and renewed glaciation during the last glacial-interglacial transition. Although this event involved a global reorganization of atmospheric and oceanic circulation [Denton GH, Alley RB, Comer GC, Broecker WS (2005) Quat Sci Rev 24:1159-1182], the magnitude, seasonality, and geographical footprint of YDS cooling remain unresolved and pose a challenge to our understanding of abrupt climate change. Here, we present a deglacial chronology from Scotland, immediately downwind of the North Atlantic Ocean, indicating that the Scottish ice cap disintegrated during the first half of the YDS. We suggest that stratification of the North Atlantic Ocean resulted in amplified seasonality that, paradoxically, stimulated a severe wintertime climate while promoting warming summers through solar heating of the mixed layer. This latter process drove deglaciation of downwind landmasses to completion well before the end of the YDS.


Asunto(s)
Cubierta de Hielo , Estaciones del Año , Temperatura , Océano Atlántico , Calibración , Geografía , Datación Radiométrica , Escocia , Factores de Tiempo
16.
Science ; 320(5872): 93-6, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18309048

RESUMEN

Dust plays a critical role in Earth's climate system and serves as a natural source of iron and other micronutrients to remote regions of the ocean. We have generated records of dust deposition over the past 500,000 years at three sites spanning the breadth of the equatorial Pacific Ocean. Equatorial Pacific dust fluxes are highly correlated with global ice volume and with dust fluxes to Antarctica, which suggests that dust generation in interhemispheric source regions exhibited a common response to climate change over late-Pleistocene glacial cycles. Our results provide quantitative constraints on the variability of aeolian iron supply to the equatorial Pacific Ocean and, more generally, on the potential contribution of dust to past climate change and to related changes in biogeochemical cycles.

17.
Science ; 313(5786): 491, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16873659

RESUMEN

Polar ice provides an archive for the influx of cosmic dust. Here, we present a high-resolution, glacial-to-interglacial record of cosmic dust using helium isotope analysis of the European Project for Ice Coring in Antarctica (EPICA) ice core drilled in Dronning Maud Land. We obtained a relatively constant 3He flux over the past 30,000 years. This finding excludes 3He as a pacemaker of late Pleistocene glacial cycles. Rather, it supports 3He as a constant flux parameter in paleoclimatic studies. A last glacial-to-Holocene shift of the 4He/non-sea salt Ca2+ ratio appears to indicate a glacial-to-interglacial change in the terrestrial dust source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...