Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269569

RESUMEN

Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.


Asunto(s)
Carboplatino/farmacología , Neoplasias Endometriales/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Células Madre Neoplásicas/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Stem Cell Rev Rep ; 18(4): 1510-1520, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34748196

RESUMEN

Adult human neural crest-derived stem cells (NCSCs) are found in a variety of adult tissues and show an extraordinary broad developmental potential. Despite their great differentiation capacity, increasing evidence suggest a remaining niche-dependent variability between different NCSC-populations regarding their differentiation behavior and expression signatures. In the present study, we extended the view on heterogeneity of NCSCs by identifying heterogeneous expression levels and protein amounts of characteristic markers even between NCSCs from the same niche of origin. In particular, populations of neural crest-derived inferior turbinate stem cells (ITSCs) isolated from different individuals showed significant variations in characteristic NCSC marker proteins Nestin, S100 and Slug in a donor-dependent manner. Notably, increased nuclear protein amounts of Slug were accompanied by a significantly elevated level of nuclear NF-κB-p65 protein, suggesting an NF-κB-dependent regulation of NCSC-makers. In addition to this interpopulational genetic heterogeneity of ITSC-populations from different donors, single ITSCs also revealed a strong heterogeneity regarding the protein amounts of Nestin, S100, Slug and NF-κB-p65 even within the same clonal culture. Our present findings therefor strongly suggest ITSC-heterogeneity to be at least partly based on an interpopulational genetic heterogeneity dependent on the donor accompanied by a stochastic intrapopulational heterogeneity between single cells. We propose this stochastic intrapopulational heterogeneity to occur in addition to the already described genetic variability between clonal NCSC-cultures and the niche-dependent plasticity of NCSCs. Our observations offer a novel perspective on NCSC-heterogeneity, which may build the basis to understand heterogeneous NCSC-behavior.


Asunto(s)
Cresta Neural , Células-Madre Neurales , Adulto , Biomarcadores/metabolismo , Diferenciación Celular/genética , Humanos , FN-kappa B/metabolismo , Nestina/genética
3.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800955

RESUMEN

Cancer stem cells (CSCs) are crucial mediators of tumor growth, metastasis, therapy resistance, and recurrence in a broad variety of human cancers. Although their biology is increasingly investigated within the distinct types of cancer, direct comparisons of CSCs from different tumor types allowing comprehensive mechanistic insights are rarely assessed. In the present study, we isolated CSCs from endometrioid carcinomas, glioblastoma multiforme as well as adenocarcinomas of lung and prostate and assessed their global transcriptomes using full-length cDNA nanopore sequencing. Despite the expression of common CSC markers, principal component analysis showed a distinct separation of the CSC populations into three clusters independent of the specific type of tumor. However, GO-term and KEGG pathway enrichment analysis revealed upregulated genes related to ribosomal biosynthesis, the mitochondrion, oxidative phosphorylation, and glycolytic pathways, as well as the proteasome, suggesting a great extent of metabolic flexibility in CSCs. Interestingly, the GO term "NF-kB binding" was likewise found to be elevated in all investigated CSC populations. In summary, we here provide evidence for high global transcriptional similarities between CSCs from various tumors, which particularly share upregulated gene expression associated with mitochondrial and ribosomal activity. Our findings may build the basis for identifying novel therapeutic strategies targeting CSCs.

4.
Front Cell Dev Biol ; 9: 662754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898464

RESUMEN

Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.

5.
Cells ; 10(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925297

RESUMEN

There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein-protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/metabolismo
6.
Clin Gastroenterol Hepatol ; 19(8): 1726-1729.e3, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33516952

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects the nasopharynx and lungs and causes coronavirus disease-2019 (COVID-19). It may impact the heart, brain, kidney, and liver.1 Although functional impairment of the liver has been correlated with worse clinical outcomes, little is known about the pathophysiology of hepatic injury and repair in COVID-19.2,3 Histologic evaluation has been limited to small numbers of COVID-19 cases with no control subjects2,4 and demonstrated largely heterogeneous patterns of pathology.2,3.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Humanos , Riñón , Hígado , SARS-CoV-2
7.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899390

RESUMEN

We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.


Asunto(s)
Antígeno AC133/metabolismo , Plaquetas/fisiología , Endotelio Vascular/citología , Hígado/citología , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Selectina-P/metabolismo , Animales , Endotelio Vascular/metabolismo , Hígado/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar
8.
Sci Rep ; 8(1): 16012, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375448

RESUMEN

Protection of neurons against oxidative stress is crucial during neuronal development, maintenance and for treating neurodegenerative diseases. However, little is known about the molecular mechanisms underlying sex-specific maturation and survival of neurons. In the present study, we demonstrate NF-κB-p65 mediated neuroprotection in human glutamatergic neurons differentiated from inferior turbinate stem cells (ITSCs) in a sex-dependent manner. We successfully differentiated ITSCs into MAP-2+/NF200+/Synaptophysin+/vGlut2+-glutamatergic neurons in vitro and ex vivo and validated their functionality. TNF-α-dependent NF-κB-p65 activation was accompanied by significant neuroprotection against oxidative stress-induced neuronal death, which was surprisingly higher in neurons from female donors. Accordingly, sex-specific neuroprotection of female neurons was followed by an increased expression of special NF-κB target genes SOD2 and IGF2. Among these, SOD2 is a well known gene protecting cells against oxidative stress resulting in longevity. In addition, IGF2 is known to promote synapse formation and spine maturation, and it has antioxidant and neuroprotective effects against oxidative damage. In conclusion, we show that NF-κB-p65 is a key player in neuroprotection of human neurons, however the protective gene expression program beneath it differs between sexes. Our findings are in accordance with the increasing evidences pointing towards sex-specific differences in risk and severity of neurodegenerative diseases.


Asunto(s)
Neuronas/metabolismo , Neuroprotección , Factor de Transcripción ReIA/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Células Cultivadas , Femenino , Ácido Glutámico/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Modelos Biológicos , Cresta Neural/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuroprotección/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factores Sexuales , Trasplante de Células Madre , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...