Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 85: 145-158, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074544

RESUMEN

Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 µg/L (4.1 ± 0.1 µg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Alcaloides de Veratrum , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alcaloides de Veratrum/metabolismo , Azúcares/metabolismo
2.
Adv Mater ; 35(36): e2301086, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37221642

RESUMEN

Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments.


Asunto(s)
Fotoquímica , ADN/química , Transducción de Señal , Hidrogeles/química , Fotoquímica/métodos
3.
Chem ; 8(11): 3018-3030, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36405374

RESUMEN

Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.

4.
J Am Chem Soc ; 143(23): 8925-8934, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34096291

RESUMEN

Proteins are exquisite nanoscale building blocks: molecularly pure, chemically addressable, and inherently selective for their evolved function. The organization of proteins into single crystals with high positional, orientational, and translational order results in materials where the location of every atom can be known. However, controlling the organization of proteins is challenging due to the myriad interactions that define protein interfaces within native single crystals. Recently, we discovered that introducing a single DNA-DNA interaction between protein surfaces leads to changes in the packing of proteins within single crystals and the protein-protein interactions (PPIs) that arise. However, modifying specific PPIs to effect deliberate changes to protein packing is an unmet challenge. In this work, we hypothesized that disrupting and replacing a highly conserved PPI with a DNA-DNA interaction would enable protein packing to be modulated by exploiting the programmability of the introduced oligonucleotides. Using concanavalin A (ConA) as a model protein, we circumvent potentially deleterious mutagenesis and exploit the selective binding of ConA toward mannose to noncovalently attach DNA to the protein surface. We show that DNA association eliminates the major PPI responsible for crystallization of native ConA, thereby allowing subtle changes to DNA design (length, complementarity, and attachment position) to program distinct changes to ConA packing, including the realization of three novel crystal structures and the deliberate expansion of ConA packing along a single crystallographic axis. These findings significantly enhance our understanding of how DNA can supersede native PPIs to program protein packing within ordered materials.


Asunto(s)
Concanavalina A/química , ADN/química , Cristalografía por Rayos X , Modelos Moleculares
5.
J Am Chem Soc ; 142(19): 8596-8601, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32356981

RESUMEN

A novel method for controlling the oligomerization of metastable DNA hairpins using the hybridization chain reaction (HCR) is reported. Control was achieved through the introduction of a base-pair mismatch in the duplex of the hairpins. The mismatch modification allows one to kinetically differentiate initiation versus propagation events, leading to DNA oligomers up to 10 monomers long and improving dispersities from 2.5 to 1.3-1.6. Importantly, even after two consecutive chain extensions, dispersity remained unaffected, showing that well-defined block co-oligomers can be achieved. As a proof-of-concept, this technique was then applied to hairpin monomers functionalized with a mutant green fluorescent protein to prepare protein oligomers. Taken together, this work introduces an effective method for controlling living macromolecular HCR oligomerization in a manner analogous to the controlled polymerization of small molecules.


Asunto(s)
ADN/química , Hibridación de Ácido Nucleico , Cinética
6.
Chem ; 6(4): 1007-1017, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33709040

RESUMEN

Designed DNA-DNA interactions are investigated for their ability to modulate protein packing within single crystals of mutant green fluorescent proteins (mGFPs) functionalized with a single DNA strand (mGFP-DNA). We probe the effects of DNA sequence, length, and protein-attachment position on the formation and protein packing of mGFP-DNA crystals. Notably, when complementary mGFP-DNA conjugates are introduced to one another, crystals form with nearly identical packing parameters, regardless of sequence if the number of bases is equivalent. DNA complementarity is essential, because experiments with non-complementary sequences produce crystals with different protein arrangements. Importantly, the DNA length and its position of attachment on the protein markedly influence the formation of and protein packing within single crystals. This work shows how designed DNA interactions can be used to influence the growth and packing in X-ray diffraction quality protein single crystals and is thus an important step forward in protein crystal engineering.

7.
Acc Chem Res ; 52(7): 1939-1948, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31199115

RESUMEN

Proteins are a class of nanoscale building block with remarkable chemical complexity and sophistication: their diverse functions, shapes, and symmetry as well as atomically monodisperse structures far surpass the range of conventional nanoparticles that can be accessed synthetically. The chemical topologies of proteins that drive their assembly into materials are central to their functions in nature. However, despite the importance of protein materials in biology, efforts to harness these building blocks synthetically to engineer new materials have been impeded by the chemical complexity of protein surfaces, making it difficult to reliably design protein building blocks that can be robustly transformed into targeted materials. Here we describe our work aimed at exploiting a simple but important concept: if one could exchange complex protein-protein interactions with well-defined and programmable DNA-DNA interactions, one could control the assembly of proteins into structurally well-defined oligomeric and polymeric materials and three-dimensional crystals. As a class of nanoscale building block, proteins with surface DNA modifications have a vast design space that exceeds what is practically and conceptually possible with their inorganic counterparts: the sequences of the DNA and protein and the chemical nature and position of DNA attachment all play roles in dictating the assembly behavior of protein-DNA conjugates. We summarize how each of these design parameters can influence structural outcome, beginning with proteins with a single surface DNA modification, where energy barriers between protein monomers can be tuned through the sequence and secondary structure of the oligonucleotide. We then explore challenges and progress in designing directional interactions and valency on protein surfaces. The directional binding properties of protein-DNA conjugates are ultimately imposed by the amino acid sequence of the protein, which defines the spatial distribution of DNA modification sites on the protein. Through careful design and mutagenesis, bivalent building blocks that bind directionally to form one-dimensional assemblies can be realized. Finally, we discuss the assembly of proteins densely modified with DNA into crystalline superlattices. At first glance, these protein building blocks display crystallization behavior remarkably similar to that of their DNA-functionalized inorganic nanoparticle counterparts, which allows design principles elucidated for DNA-guided nanoparticle crystallization to be used as predictive tools in determining structural outcomes in protein systems. Proteins additionally offer design handles that nanoparticles do not: unlike nanoparticles, the number and spatial distribution of DNA can be controlled through the protein sequence and DNA modification chemistry. Changing the spatial distributions of DNA can drive otherwise identical proteins down distinct crystallization pathways and yield building blocks with exotic distributions of DNA that crystallize into structures that are not yet attainable using isotropically functionalized particles. We highlight challenges in accessing other classes of architectures and establishing general design rules for DNA-mediated protein assembly. Harnessing surface DNA modifications to build protein materials creates many opportunities to realize new architectures and answer fundamental questions about DNA-modified nanostructures in both materials and biological contexts. Proteins with surface DNA modifications are a powerful class of nanomaterial building blocks for which the DNA and protein sequences and the nature of their conjugation dictate the material structure.


Asunto(s)
Catalasa/química , Chaperonina 60/química , ADN/química , beta-Galactosidasa/química , Ingeniería/métodos , Oro/química , Ciencia de los Materiales/métodos , Nanopartículas del Metal/química , Oligodesoxirribonucleótidos/química
8.
J Am Chem Soc ; 140(36): 11444-11453, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30063830

RESUMEN

Postsynthetic metal exchange represents a powerful synthetic method to generate metal-organic frameworks (MOFs) that are not accessible through direct synthesis, yet it is often hampered by slow reaction kinetics and incomplete exchange. While studies of metal exchange reactions have primarily focused on the transmetalation process, transport of exogenous metal ions into the framework structure represents a critical yet underexplored process. Here, we employ X-ray crystallography, electron microscopy, and energy dispersive X-ray spectroscopy to comprehensively examine the transport of Co2+ and Zn2+ ions during postsynthetic metal exchange reactions within the 2D manganese-benzoquinoid framework (Et4N)2[Mn2L3] (H2L = 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone). These studies reveal that exogenous metal ions diffuse primarily through the 1D channel along the crystallographic c axis, and this transport represents the rate-determining step. In addition, the Mn framework exhibits reversible dynamic structure behavior, contracting upon desolvation and then rapidly restoring its original structure and full volume upon resolvation. When conducting metal exchange reactions using a partially desolvated sample, these structural dynamics lead to acceleration of metal transport by up to 2000-fold, improve product purity, and give exchange of a larger fraction of metal sites. Finally, upon performing metal exchange using full-solvated crystals, an intermediate product can be isolated that constitutes a unique example of a 2D material with a gradient vertical heterostructure.

9.
Inorg Chem ; 56(15): 8739-8743, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28742330

RESUMEN

Zr-based metal-organic frameworks (MOFs) are promising supports for copper-based catalysts able to activate methane. Homo- and heterobimetal-functionalized NU-1000 MOF nodes were selected to computationally screen the effect of ancillary metals for C-H bond activation, allowing us to correlate activation free energies with chemical descriptors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA