Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Med Biol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648786

RESUMEN

OBJECTIVE: Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment. Approach: A rapid acquisition (14 seconds additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers. Main Results: Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80 % and a recall of 100 % for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal. Significance: The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from three manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.

2.
Insights Imaging ; 15(1): 47, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38361108

RESUMEN

OBJECTIVES: MAchine Learning In MyelomA Response (MALIMAR) is an observational clinical study combining "real-world" and clinical trial data, both retrospective and prospective. Images were acquired on three MRI scanners over a 10-year window at two institutions, leading to a need for extensive curation. METHODS: Curation involved image aggregation, pseudonymisation, allocation between project phases, data cleaning, upload to an XNAT repository visible from multiple sites, annotation, incorporation of machine learning research outputs and quality assurance using programmatic methods. RESULTS: A total of 796 whole-body MR imaging sessions from 462 subjects were curated. A major change in scan protocol part way through the retrospective window meant that approximately 30% of available imaging sessions had properties that differed significantly from the remainder of the data. Issues were found with a vendor-supplied clinical algorithm for "composing" whole-body images from multiple imaging stations. Historic weaknesses in a digital video disk (DVD) research archive (already addressed by the mid-2010s) were highlighted by incomplete datasets, some of which could not be completely recovered. The final dataset contained 736 imaging sessions for 432 subjects. Software was written to clean and harmonise data. Implications for the subsequent machine learning activity are considered. CONCLUSIONS: MALIMAR exemplifies the vital role that curation plays in machine learning studies that use real-world data. A research repository such as XNAT facilitates day-to-day management, ensures robustness and consistency and enhances the value of the final dataset. The types of process described here will be vital for future large-scale multi-institutional and multi-national imaging projects. CRITICAL RELEVANCE STATEMENT: This article showcases innovative data curation methods using a state-of-the-art image repository platform; such tools will be vital for managing the large multi-institutional datasets required to train and validate generalisable ML algorithms and future foundation models in medical imaging. KEY POINTS: • Heterogeneous data in the MALIMAR study required the development of novel curation strategies. • Correction of multiple problems affecting the real-world data was successful, but implications for machine learning are still being evaluated. • Modern image repositories have rich application programming interfaces enabling data enrichment and programmatic QA, making them much more than simple "image marts".

3.
Eur Radiol ; 34(4): 2457-2467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37776361

RESUMEN

OBJECTIVES: Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) acquisition and advanced processing can accelerate acquisition time and improve MR image quality. This study evaluated the image quality and apparent diffusion coefficient (ADC) measurements of free-breathing DWI acquired from patients with liver metastases using a prototype SMS-DWI acquisition (with/without an advanced processing option) and conventional DWI. METHODS: Four DWI schemes were compared in a pilot 5-patient cohort; three DWI schemes were further assessed in a 24-patient cohort. Two readers scored image quality of all b-value images and ADC maps across the three methods. ADC measurements were performed, for all three methods, in left and right liver parenchyma, spleen, and liver metastases. The Friedman non-parametric test (post-hoc Wilcoxon test with Bonferroni correction) was used to compare image quality scoring; t-test was used for ADC comparisons. RESULTS: SMS-DWI was faster (by 24%) than conventional DWI. Both readers scored the SMS-DWI with advanced processing as having the best image quality for highest b-value images (b750) and ADC maps; Cohen's kappa inter-reader agreement was 0.6 for b750 image and 0.56 for ADC maps. The prototype SMS-DWI sequence with advanced processing allowed a better visualization of the left lobe of the liver. ADC measured in liver parenchyma, spleen, and liver metastases using the SMS-DWI with advanced processing option showed lower values than those derived from the SMS-DWI method alone (t-test, p < 0.0001; p < 0.0001; p = 0.002). CONCLUSIONS: Free-breathing SMS-DWI with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. CLINICAL RELEVANCE STATEMENT: Free-breathing simultaneous multi-slice- diffusion-weighted imaging (DWI) with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. KEY POINTS: • Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) can accelerate acquisition time and improve image quality. • Apparent diffusion coefficients (ADC) measured in liver parenchyma, spleen, and liver metastases using the simultaneous multi-slice DWI with advanced processing were significantly lower than those derived from the simultaneous multi-slice DWI method alone. • Simultaneous multi-slice DWI sequence with inline advanced processing was faster and demonstrated better image quality in liver patients.


Asunto(s)
Neoplasias Hepáticas , Respiración , Humanos , Reproducibilidad de los Resultados , Neoplasias Hepáticas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos
4.
Diagnostics (Basel) ; 13(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958277

RESUMEN

T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framework that uses dilated convolutions and shared residual connections for the separate encoding of multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of architectural experiments to evaluate the tumor segmentation performance based on multiparametric input channels and different feature encoding configurations. All experiments were performed on a cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient (ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval (CI), 0.595-0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568-0.776), although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using 3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors and independent contextual learning improved the model's ability to reduce the boundary effects and distortion of DWI, leading to improved segmentation performance. Our findings could have significant implications for the development of robust and generalizable models that can extend to other multi-modal segmentation applications.

5.
Insights Imaging ; 14(1): 170, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840055

RESUMEN

BACKGROUND: The Myeloma Response Assessment and Diagnosis System (MY-RADS) guidelines establish a standardised acquisition and analysis pipeline for whole-body MRI (WB-MRI) in patients with myeloma. This is the first study to assess image quality in a multi-centre prospective trial using MY-RADS. METHODS: The cohort consisted of 121 examinations acquired across ten sites with a range of prior WB-MRI experience, three scanner manufacturers and two field strengths. Image quality was evaluated qualitatively by a radiologist and quantitatively using a semi-automated pipeline to quantify common artefacts and image quality issues. The intra- and inter-rater repeatability of qualitative and quantitative scoring was also assessed. RESULTS: Qualitative radiological scoring found that the image quality was generally good, with 94% of examinations rated as good or excellent and only one examination rated as non-diagnostic. There was a significant correlation between radiological and quantitative scoring for most measures, and intra- and inter-rater repeatability were generally good. When the quality of an overall examination was low, this was often due to low quality diffusion-weighted imaging (DWI), where signal to noise ratio (SNR), anterior thoracic signal loss and brain geometric distortion were found as significant predictors of examination quality. CONCLUSIONS: It is possible to successfully deliver a multi-centre WB-MRI study using the MY-RADS protocol involving scanners with a range of manufacturers, models and field strengths. Quantitative measures of image quality were developed and shown to be significantly correlated with radiological assessment. The SNR of DW images was identified as a significant factor affecting overall examination quality. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03188172 , Registered on 15 June 2017. CRITICAL RELEVANCE STATEMENT: Good overall image quality, assessed both qualitatively and quantitatively, can be achieved in a multi-centre whole-body MRI study using the MY-RADS guidelines. KEY POINTS: • A prospective multi-centre WB-MRI study using MY-RADS can be successfully delivered. • Quantitative image quality metrics were developed and correlated with radiological assessment. • SNR in DWI was identified as a significant predictor of quality, allowing for rapid quality adjustment.

6.
Eur Radiol ; 33(2): 863-871, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36169688

RESUMEN

OBJECTIVE: To establish optimised diffusion weightings ('b-values') for acquisition of whole-body diffusion-weighted MRI (WB-DWI) for estimation of the apparent diffusion coefficient (ADC) in patients with metastatic melanoma (MM). Existing recommendations for WB-DWI have not been optimised for the tumour properties in MM; therefore, evaluation of acquisition parameters is essential before embarking on larger studies. METHODS: Retrospective clinical data and phantom experiments were used. Clinical data comprised 125 lesions from 14 examinations in 11 patients with multifocal MM, imaged before and/or after treatment with immunotherapy at a single institution. ADC estimates from these data were applied to a model to estimate the optimum b-value. A large non-diffusing phantom was used to assess eddy current-induced geometric distortion. RESULTS: Considering all tumour sites from pre- and post-treatment examinations together, metastases exhibited a large range of mean ADC values, [0.67-1.49] × 10-3 mm2/s, and the optimum high b-value (bhigh) for ADC estimation was 1100 (10th-90th percentile: 740-1790) s/mm2. At higher b-values, geometric distortion increased, and longer echo times were required, leading to reduced signal. CONCLUSIONS: Theoretical optimisation gave an optimum bhigh of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in MM, with the large range of optimum b-values reflecting the wide range of ADC values in these tumours. Geometric distortion and minimum echo time increase at higher b-values and are not included in the theoretical optimisation; bhigh in the range 750-1100 s/mm2 should be adopted to maintain acceptable image quality but performance should be evaluated for a specific scanner. KEY POINTS: • Theoretical optimisation gave an optimum high b-value of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in metastatic melanoma. • Considering geometric distortion and minimum echo time (TE), a b-value in the range 750-1100 s/mm2 is recommended. • Sites should evaluate the performance of specific scanners to assess the effect of geometric distortion and minimum TE.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Melanoma/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
7.
Eur Radiol Exp ; 6(1): 55, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36411379

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) can be used to target tumour components in biopsy procedures, while the ability to precisely correlate histology and MRI signal is crucial for imaging biomarker validation. Robotic MRI/computed tomography (CT) fusion biopsy offers the potential for this without in-gantry biopsy, although requires development. METHODS: Test-retest T1 and T2 relaxation times, attenuation (Hounsfield units, HU), and biopsy core quality were prospectively assessed (January-December 2021) in a range of gelatin, agar, and mixed gelatin/agar solutions of differing concentrations on days 1 and 8 after manufacture. Suitable materials were chosen, and four biopsy phantoms were constructed with twelve spherical 1-3-cm diameter targets visible on MRI, but not on CT. A technical pipeline was developed, and intraoperator and interoperator reliability was tested in four operators performing a total of 96 biopsies. Statistical analysis included T1, T2, and HU repeatability using Bland-Altman analysis, Dice similarity coefficient (DSC), and intraoperator and interoperator reliability. RESULTS: T1, T2, and HU repeatability had 95% limits-of-agreement of 8.3%, 3.4%, and 17.9%, respectively. The phantom was highly reproducible, with DSC of 0.93 versus 0.92 for scanning the same or two different phantoms, respectively. Hit rate was 100% (96/96 targets), and all operators performed robotic biopsies using a single volumetric acquisition. The fastest procedure time was 32 min for all 12 targets. CONCLUSIONS: A reproducible biopsy phantom was developed, validated, and used to test robotic MRI/CT-fusion biopsy. The technique was highly accurate, reliable, and achievable in clinically acceptable timescales meaning it is suitable for clinical application.


Asunto(s)
Gelatina , Procedimientos Quirúrgicos Robotizados , Reproducibilidad de los Resultados , Agar , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos
8.
Phys Med ; 101: 165-182, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36055125

RESUMEN

PURPOSE: This overview of the current landscape of quantitative magnetic resonance imaging biomarkers (qMR IBs) aims to support the standardisation of academic IBs to assist their translation to clinical practice. METHODS: We used three complementary approaches to investigate qMR IB use and quality management practices within the UK: 1) a literature search of qMR and quality management terms during 2011-2015 and 2016-2020; 2) a database search for clinical research studies using qMR IBs during 2016-2020; and 3) a survey to ascertain the current availability and quality management practices for clinical MRI scanners and associated equipment at research institutions across the UK. RESULTS: The analysis showed increased use of all qMR methods between the periods 2011-2015 and 2016-2020 and diffusion-tensor MRI and volumetry to be popular methods. However, the "translation ratio" of journal articles to clinical research studies was higher for qMR methods that have evidence of clinical translation via a commercial route, such as fat fraction and T2 mapping. The number of journal articles citing quality management terms doubled between the periods 2011-2015 and 2016-2020; although, its proportion relative to all journal articles only increased by 3.0%. The survey suggested that quality assurance (QA) and quality control (QC) of data acquisition procedures are under-reported in the literature and that QA/QC of acquired data/data analysis are under-developed and lack consistency between institutions. CONCLUSIONS: We summarise current attempts to standardise and translate qMR IBs, and conclude by outlining the ideal quality management practices and providing a gap analysis between current practice and a metrological standard.


Asunto(s)
Biomarcadores , Humanos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos
9.
Front Oncol ; 12: 899180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924167

RESUMEN

Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.

10.
Front Oncol ; 12: 892620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847882

RESUMEN

A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.

11.
Insights Imaging ; 13(1): 123, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900614

RESUMEN

BACKGROUND: Whole-body (WB) MRI, which includes diffusion-weighted imaging (DWI) and T1-w Dixon, permits sensitive detection of marrow disease in addition to qualitative and quantitative measurements of disease and response to treatment of bone marrow. We report on the first study to embed standardised WB-MRI within a prospective, multi-centre myeloma clinical trial (IMAGIMM trial, sub-study of OPTIMUM/MUKnine) to explore the use of WB-MRI to detect minimal residual disease after treatment. METHODS: The standardised MY-RADS WB-MRI protocol was set up on a local 1.5 T scanner. An imaging manual describing the MR protocol, quality assurance/control procedures and data transfer was produced and provided to sites. For non-identical scanners (different vendor or magnet strength), site visits from our physics team were organised to support protocol optimisation. The site qualification process included review of phantom and volunteer data acquired at each site and a teleconference to brief the multidisciplinary team. Image quality of initial patients at each site was assessed. RESULTS: WB-MRI was successfully set up at 12 UK sites involving 3 vendor systems and two field strengths. Four main protocols (1.5 T Siemens, 3 T Siemens, 1.5 T Philips and 3 T GE scanners) were generated. Scanner limitations (hardware and software) and scanning time constraint required protocol modifications for 4 sites. Nevertheless, shared methodology and imaging protocols enabled other centres to obtain images suitable for qualitative and quantitative analysis. CONCLUSIONS: Standardised WB-MRI protocols can be implemented and supported in prospective multi-centre clinical trials. Trial registration NCT03188172 clinicaltrials.gov; registration date 15th June 2017 https://clinicaltrials.gov/ct2/show/study/NCT03188172.

12.
Br J Radiol ; 95(1134): 20220217, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35290098

RESUMEN

OBJECTIVE: A commercially available CT-guided robot offers enhanced abilities in planning, targeting, and confirming accurate needle placement. In this short communication, we describe our first UK experience of robotic interventional oncology procedures. METHODS: We describe the device, discuss installation, operation, and report upon needle insertion success, accuracy (path deviation; PD and tip deviation; TD), number of adjustments, complications, and procedural success. RESULTS: Nine patients (seven males), median age 66 years (range 43-79) were consented for biopsy or ablation between March and April 2021. Needle placement in biopsy was more accurate than ablation (median 1 vs 11 mm PD and 1 vs 20 mm TD) and required fewer adjustments (median 0 vs 5). No complications arose, and all procedures were successful (diagnostic material obtained or complete ablation at follow-up). CONCLUSION: Short procedure times and very high levels of accuracy were readily achieved with biopsy procedures, although tumour ablation was less accurate which likely reflects higher procedural complexity. ADVANCES IN KNOWLEDGE: Achieving highly accurate robotic biopsy with is feasible within a very short time span. Further work is required to maximise the potential of robotic guidance in tumour ablation procedures, which is likely due to higher complexity giving a longer learning curve.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Agujas , Procedimientos Quirúrgicos Robotizados/métodos , Tomografía Computarizada por Rayos X/métodos , Reino Unido
13.
Med Phys ; 49(4): 2820-2835, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34455593

RESUMEN

Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.


Asunto(s)
Imagen por Resonancia Magnética , Imágenes de Resonancia Magnética Multiparamétrica , Reproducibilidad de los Resultados
14.
Cancer Imaging ; 21(1): 67, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34924031

RESUMEN

BACKGROUND: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent. This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment in patients with colorectal liver metastases in a cohort with confirmed treatment response. METHODS: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols. MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters [diffusion coefficient D (10-3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10-3 mm2/s), and their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min-1), enhancement fraction EF (%), and their product KEF (min-1)] were recorded at each visit, before and after treatment. Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with Spearman rank tests. Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST) evaluations. RESULTS: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF (91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min-1, P<0.001) and Ktrans (0.109 to 0.078 min-1, P=0.002). For IVIM-DWI, only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10-3 mm2/s, P<0.001), while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002) and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical responders, whilst non-responders were incorrectly identified. CONCLUSION: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite profound and significant post-treatment reductions in DCE-MRI measurements. TRIAL REGISTRATION: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Imagen por Resonancia Magnética , Estudios Prospectivos
15.
Diagnostics (Basel) ; 11(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34829310

RESUMEN

The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.

16.
Radiol Imaging Cancer ; 3(5): e210048, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34559006

RESUMEN

Purpose To compare disease detection of myeloma using contemporary whole-body (WB) MRI and fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/CT protocols and to correlate imaging with laboratory estimates of disease burden, including molecular characteristics. Materials and Methods In this observational, prospective study, participants were recruited from November 2015 to March 2018 who had a diagnosis of myeloma, who were planned to undergo chemotherapy and autologous stem cell transplantation, and who underwent baseline WB-MRI and FDG PET/CT (ClinicalTrials.gov identifier NCT02403102). Baseline clinical data, including genetics, were collected. Paired methods were used to compare burden and patterns of disease. Results Sixty participants (mean age, 60 years ± 9 [standard deviation]; 35 men) underwent baseline WB-MRI and FDG PET/CT. WB-MRI showed significantly higher detection for focal lesions at all anatomic sites (except ribs, scapulae, and clavicles) and for diffuse disease at all sites. Two participants presented with two or more focal lesions smaller than 5 mm only at WB-MRI but not FDG PET/CT. Participants with diffuse disease at MRI had higher plasma cell infiltration (percentage of nucleated cells: median, 60% [interquartile range {IQR}, 50%-61%] vs 15% [IQR, 4%-50%]; P = .03) and paraprotein levels (median, 32.0 g/L [IQR, 24.0-48.0 g/L] vs 20.0 g/L [IQR, 12.0-22.6 g/L]; P = .02) compared with those without diffuse disease. All genetically high-risk tumors showed diffuse infiltration at WB-MRI. Conclusion WB-MRI helped detect a higher number of myeloma lesions than FDG PET/CT, and diffuse disease detected at WB-MRI correlated with laboratory measures of disease burden and molecular markers of risk. Keywords: MR-Imaging, Skeletal-Appendicular, Skeletal-Axial, Bone Marrow, Hematologic Diseases, Oncology Clinical trial registration no. NCT02403102. Supplemental material is available for this article. © RSNA, 2021.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Trasplante Autólogo
17.
Front Oncol ; 11: 665807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395244

RESUMEN

BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician interaction and is a major challenge. Currently, there is a lack of available pre-annotated MRI data for training supervised segmentation algorithms. This study aimed to develop a deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-existing repository of clinical planning CTs. METHODS: MRI synthesis was performed using UNet++ and cycle-consistent generative adversarial network (Cycle-GAN), and the predictions were compared qualitatively and quantitatively against a baseline UNet model using pixel-wise and perceptual loss functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet architecture was trained on synthetic MRI using CT-propagated contours and subsequently tested on real pelvic T1 weighted MRI scans. RESULTS: In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert variabilities in the test scores; each of the four radiologists correctly identified images as acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of pelvic bone on T1-weighted images was successful in a number of test cases. CONCLUSION: Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue contrast on CT. Our study showed the potential of deep learning models for synthesizing realistic MR images from CT, and transferring cross-domain knowledge which may help to expand training datasets for 21 development of MR-only segmentation models.

18.
Br J Cancer ; 124(6): 1130-1137, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33398064

RESUMEN

BACKGROUND: Diffusion-weighted magnetic resonance imaging (DW-MRI) potentially interrogates site-specific response to neoadjuvant chemotherapy (NAC) in epithelial ovarian cancer (EOC). METHODS: Participants with newly diagnosed EOC due for platinum-based chemotherapy and interval debulking surgery were recruited prospectively in a multicentre study (n = 47 participants). Apparent diffusion coefficient (ADC) and solid tumour volume (up to 10 lesions per participant) were obtained from DW-MRI before and after NAC (including double-baseline for repeatability assessment in n = 19). Anatomically matched lesions were analysed after surgical excision (65 lesions obtained from 25 participants). A trained algorithm determined tumour cell fraction, percentage tumour and percentage necrosis on histology. Whole-lesion post-NAC ADC and pre/post-NAC ADC changes were compared with histological metrics (residual tumour/necrosis) for each tumour site (ovarian, omental, peritoneal, lymph node). RESULTS: Tumour volume reduced at all sites after NAC. ADC increased between pre- and post-NAC measurements. Post-NAC ADC correlated negatively with tumour cell fraction. Pre/post-NAC changes in ADC correlated positively with percentage necrosis. Significant correlations were driven by peritoneal lesions. CONCLUSIONS: Following NAC in EOC, the ADC (measured using DW-MRI) increases differentially at disease sites despite similar tumour shrinkage, making its utility site-specific. After NAC, ADC correlates negatively with tumour cell fraction; change in ADC correlates positively with percentage necrosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT01505829.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores/metabolismo , Carcinoma Epitelial de Ovario/patología , Imagen por Resonancia Magnética/métodos , Necrosis , Terapia Neoadyuvante/métodos , Neoplasia Residual/patología , Anciano , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/metabolismo , Pronóstico , Estudios Prospectivos , Carga Tumoral
19.
MAGMA ; 34(4): 513-521, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33355719

RESUMEN

OBJECTIVE: To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). METHODS: Ten volunteers underwent WB-DWI using conventional 3D volume shim and iShim. Forty-eight consecutive patients underwent WB-DWI with either volume shim (n = 24) or iShim (n = 24) only. For all subjects, displacement of the spinal cord at imaging station interfaces was measured on composed b = 900 s/mm2 images. The signal intensity ratios, computed as the average signal intensity in a region of high susceptibility gradient (sternum) divided by the average signal intensity in a region of low susceptibility gradient (vertebral body), were compared in volunteers. For patients, image quality was graded from 1 to 5 (1 = Poor, 5 = Excellent). Signal intensity discontinuity scores were recorded from 1 to 4 (1 = 2 + steps, 4 = 0 steps). A p value of < 0.05 was considered significant. RESULTS: Spinal cord displacement artefacts were lower with iShim (p < 0.05) at the thoracic junction in volunteers and at the cervical and thoracic junctions in patients (p < 0.05). The sternum/vertebra signal intensity ratio in healthy volunteers was higher with iShim compared with the volume shim sequence (p < 0.05). There were no significant differences between the volume shim and iShim patient groups in terms of image quality and signal intensity discontinuity scores. CONCLUSION: iShim reduced the degree of spinal cord displacement artefact between imaging stations and susceptibility-gradient-induced signal loss.


Asunto(s)
Artefactos , Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Humanos , Médula Espinal/diagnóstico por imagen , Columna Vertebral
20.
Front Oncol ; 9: 941, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649872

RESUMEN

Background: Multi-parametric MRI provides non-invasive methods for response assessment of soft-tissue sarcoma (STS) from non-surgical treatments. However, evaluation of MRI parameters over the whole tumor volume may not reveal the full extent of post-treatment changes as STS tumors are often highly heterogeneous, including cellular tumor, fat, necrosis, and cystic tissue compartments. In this pilot study, we investigate the use of machine-learning approaches to automatically delineate tissue compartments in STS, and use this approach to monitor post-radiotherapy changes. Methods: Eighteen patients with retroperitoneal sarcoma were imaged using multi-parametric MRI; 8/18 received a follow-up imaging study 2-4 weeks after pre-operative radiotherapy. Eight commonly-used supervised machine-learning techniques were optimized for classifying pixels into one of five tissue sub-types using an exhaustive cross-validation approach and expert-defined regions of interest as a gold standard. Final pixel classification was smoothed using a Markov Random Field (MRF) prior distribution on the final machine-learning models. Findings: 5/8 machine-learning techniques demonstrated high median cross-validation accuracies (82.2%, range 80.5-82.5%) with no significant difference between these five methods. One technique was selected (Naïve-Bayes) due to its relatively short training and class-prediction times (median 0.73 and 0.69 ms, respectively on a 3.5 GHz personal machine). When combined with the MRF-prior, this approach was successfully applied in all eight post-radiotherapy imaging studies and provided visualization and quantification of changes to independent STS sub-regions following radiotherapy for heterogeneous response assessment. Interpretation: Supervised machine-learning approaches to tissue classification in multi-parametric MRI of soft-tissue sarcomas provide quantitative evaluation of heterogeneous tissue changes following radiotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...