Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Dev Biol ; 68(1): 1-7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421034

RESUMEN

While traditionally recognized as a sex hormone, estrogen has a potent effect on the development of tissues beyond those of the reproductive system. Estrogen synthesis enzymes and estrogen receptors are broadly expressed in vertebrate tissues, further indicating their importance in various processes. These include the tissues of the zebrafish, which is a particularly suitable model for studying early development due to its rapid ex utero ontogeny and conserved genetic and cellular composition with other vertebrates. In this review, we provide readers with an overview of estrogen signaling, discuss important attributes of the zebrafish animal model with a special focus on the kidney, and explore recent insights from zebrafish studies about the roles of estrogen signaling in organogenesis across germ layer derivatives that range from the kidney to the brain and liver.


Asunto(s)
Transducción de Señal , Pez Cebra , Animales , Pez Cebra/genética , Transducción de Señal/genética , Organogénesis , Riñón , Estrógenos
2.
Tissue Barriers ; : 2314839, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38327070

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic conditions in which the digestive tract undergoes cycles of relapsing and remitting inflammatory episodes that cause patients to experience severe abdominal pain, bleeding, and diarrhea. Developing noninvasive and cost-effective surveillance methods that can detect an ensuing disease bout proffers an avenue to improve the quality of life for patients with IBD. Now, a recent report describes an ingenious, economical approach using a rationally designed Escherichia coli strain that can dynamically monitor inflammation inside the mammalian gastrointestinal tract. The ability of the engineered probiotic to specifically discern between dormant and activated inflammatory states of the digestive system demonstrates that living biosensors can be used to monitor health status, thus providing a powerful proof of concept that heralds the arrival of a new age of clinical diagnostics for people living with inflammatory diseases of the gut.

3.
Tissue Barriers ; : 2309036, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282252

RESUMEN

Cardiovascular diseases are a significant global health challenge and pervasive cause of mortality worldwide. Heart failure due to cardiovascular disease is characterized by the inability of the heart to pump blood efficiently to meet the metabolic demands of the body. The pathophysiology of heart failure involves myocardial remodeling due to excessive deposition of extracellular matrix proteins by cardiac myofibroblasts - structural changes which impair contractility, reduce compliance, and ultimately reduce stroke volume. Now, a recent report has uncovered an essential role for Iroquois homeobox 2 in the transcriptional regulation of cardiac fibrosis, illuminating new mechanistic insights that can be applied to developing future clinical therapies.

4.
Tissue Barriers ; : 2309717, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282267

RESUMEN

The fungus Cryptococcus neoformans is pervasive in our environment and causes the infectious disease cryptococcosis in humans, most commonly in immunocompromised patients. In addition to corroborating the avian origins of a case of cryptococcosis in an immunocompromised patient in 2000, a fascinating recent report has now characterized the genetic and phenotypic changes that occur in this C. neoformans during passage in mammalian hosts. Interestingly, mouse-passaged isolates showed differences in virulence factors ranging from capsule size, melanization, nonlytic macrophage exocytosis, and amoeba predation resistance as compared to the patient strain. Taken together, these results provide new insights about the relationship between mutations acquired during an infection and changes in virulence.

5.
Tissue Barriers ; : 2309025, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282263

RESUMEN

Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor estrogen-related receptor gamma a (esrrγa) in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.

6.
Tissue Barriers ; : 2290946, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050956

RESUMEN

The incidence of kidney disease from acute and chronic conditions continues to escalate worldwide. Interventions to replace renal function after organ failure remain limited to dialysis or transplantation, as human kidneys exhibit a limited capacity to repair damaged cells or regenerate new ones. In contrast, animals ranging from flies to fishes and even some mammals like the spiny mouse exhibit innate abilities to regenerate their kidney cells following injury. Now, a recent study has illuminated how the Mexican salamander, Ambystoma mexicanum, most commonly known as the axolotl, possesses a kidney with remarkable similarity to humans, which can robustly regenerate following acute chemical damage. These discoveries position the axolotl as a new model that can be used to advance our understanding about the fundamental mechanisms of kidney regeneration.

7.
FEBS J ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37997009

RESUMEN

Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.

8.
Tissue Barriers ; : 2281209, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978888

RESUMEN

The microbiome is a keystone of adult gastrointestinal (GI) tract health, where it facilitates digestion, wards off pathogen colonization, and exerts a powerful influence on the physiological health of organs ranging from the brain to the kidneys. From its establishment at birth and through the initial years of childhood, the human microbiome is particularly dynamic, shifting in its composition and alpha (species) diversity to an adult profile as dietary sustenance transitions from milk-based sources to others such as solid food. An innovative study has now demonstrated how microbiome maturation is requisite both for the progression of immune system development and for long-term gut barrier function. These insights have significant ramifications for designing pediatric approaches to cultivate immune cell ontogeny in the formative stages of human infancy.

9.
Tissue Barriers ; : 2257110, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794527

RESUMEN

The rising prevalence of fungal infections is a significant and growing public health threat, and this risk is further underscored by our incomplete understanding of why organs like the kidney are so susceptible to systemic candidiasis. To combat the high mortality of such infections, we urgently need to advance our understanding of fungal pathogenesis and how it articulates with human immune response. Now, a recent landmark study has illuminated a crucial role of the complement system in the response to candidiasis and determined the stepwise local response of phagocytes within the kidney during infection. These fundamental discoveries provide crucial insights that can be leveraged to improve the care and outcome for patients with fungal infections.

10.
Cells ; 12(10)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37408253

RESUMEN

Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.


Asunto(s)
Cannabinoides , Insuficiencia Renal Crónica , Humanos , Endocannabinoides/metabolismo , Ligandos , Riñón/patología , Insuficiencia Renal Crónica/patología , Cannabinoides/farmacología , Cannabinoides/metabolismo
11.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232416

RESUMEN

Cilia are essential for the ontogeny and function of many tissues, including the kidney. Here, we report that transcription factor ERRγ ortholog estrogen related receptor gamma a (Esrrγa) is essential for renal cell fate choice and ciliogenesis in zebrafish. esrrγa deficiency altered proximodistal nephron patterning, decreased the multiciliated cell populace and disrupted ciliogenesis in the nephron, Kupffer's vesicle and otic vesicle. These phenotypes were consistent with interruptions in prostaglandin signaling, and we found that ciliogenesis was rescued by PGE2 or the cyclooxygenase enzyme Ptgs1. Genetic interaction revealed that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargc1a), which acts upstream of Ptgs1-mediated prostaglandin synthesis, has a synergistic relationship with Esrrγa in the ciliogenic pathway. These ciliopathic phenotypes were also observed in mice lacking renal epithelial cell (REC) ERRγ, where significantly shorter cilia formed on proximal and distal tubule cells. Decreased cilia length preceded cyst formation in REC-ERRγ knockout mice, suggesting that ciliary changes occur early during pathogenesis. These data position Esrrγa as a novel link between ciliogenesis and nephrogenesis through regulation of prostaglandin signaling and cooperation with Ppargc1a.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Nefronas/metabolismo , Riñón/metabolismo , Prostaglandinas/metabolismo , Cilios/metabolismo
12.
Biomedicines ; 11(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189798

RESUMEN

Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.

13.
Tissue Barriers ; : 2219605, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254823

RESUMEN

Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.

14.
Methods Cell Biol ; 175: 129-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967138

RESUMEN

Ciliated cells serve vital functions in the body ranging from mechano- and chemo-sensing to fluid propulsion. Specialized cells with bundles dozens to hundreds of motile cilia known as multiciliated cells (MCCs) are essential as well, where they direct fluid movement in locations such as the respiratory, central nervous and reproductive systems. Intriguingly, the appearance of MCCs has been noted in the kidney in several disease conditions, but knowledge about their contributions to the pathobiology of these states has remained a mystery. As the mechanisms contributing to ciliopathic diseases are not yet fully understood, animal models serve as valuable tools for studying cilia development and how alterations in ciliated cell function impacts disease progression. Like other vertebrates, the zebrafish, Danio rerio, has numerous ciliated tissues. Among these, the embryonic kidney (or pronephros) is comprised of both monociliated cells and MCCs and therefore provides a setting to investigate both ciliated cell fate choice and ciliogenesis. Considering the zebrafish nephron resembles the segmentation and function of human nephrons, the zebrafish provide a tractable model for studying conserved ciliogenesis pathways in vivo. In this chapter, we provide an overview of ciliated cells with a special focus on MCCs, and present a suite of methods that can be used to visualize ciliated cells and their features in the developing zebrafish. Further, these methods enable precise quantification of ciliated cell number and various cilia-related characteristics.


Asunto(s)
Riñón , Pez Cebra , Animales , Humanos , Riñón/metabolismo , Proteínas de Pez Cebra/metabolismo , Cilios/metabolismo , Diferenciación Celular
15.
J Dev Biol ; 11(1)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36976103

RESUMEN

Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.

16.
Cells ; 12(4)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831216

RESUMEN

A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.


Asunto(s)
Riñón , Nefronas , Humanos , Evaluación Preclínica de Medicamentos , Riñón/metabolismo , Nefronas/metabolismo , Organoides/metabolismo , Organogénesis
17.
Cells ; 12(4)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831333

RESUMEN

Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17ß-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Riñón/metabolismo , Nefronas/metabolismo , Estrógenos/metabolismo
18.
J Dev Biol ; 11(1)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36810461

RESUMEN

Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.

19.
Elife ; 122023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36804010

RESUMEN

The ability of the adult zebrafish to replace damaged nephrons in the kidney depends on renal progenitor cells and renal interstitial cells working closely together.


Asunto(s)
Células Intersticiales de Cajal , Pez Cebra , Animales , Riñón , Nefronas , Células Madre
20.
Biomedicines ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551976

RESUMEN

The glycine cleavage system (GCS) is a complex located on the mitochondrial membrane that is responsible for regulating glycine levels and contributing one-carbon units to folate metabolism. Congenital mutations in GCS components, such as glycine decarboxylase (gldc), cause an elevation in glycine levels and the rare disease, nonketotic hyperglycinemia (NKH). NKH patients suffer from pleiotropic symptoms including seizures, lethargy, mental retardation, and early death. Therefore, it is imperative to fully elucidate the pathological effects of gldc dysfunction and glycine accumulation during development. Here, we describe a zebrafish model of gldc deficiency that recapitulates phenotypes seen in humans and mice. gldc deficient embryos displayed impaired fluid homeostasis suggesting renal abnormalities, as well as aberrant craniofacial morphology and neural development defects. Whole mount in situ hybridization (WISH) revealed that gldc transcripts were highly expressed in the embryonic kidney, as seen in mouse and human repository data, and that formation of several nephron segments was disrupted in gldc deficient embryos, including proximal and distal tubule populations. These kidney defects were caused by alterations in renal progenitor populations, revealing that the proper function of Gldc is essential for the patterning of this organ. Additionally, further analysis of the urogenital tract revealed altered collecting duct and cloaca morphology in gldc deficient embryos. Finally, to gain insight into the molecular mechanisms underlying these disruptions, we examined the effects of exogenous glycine treatment and observed analogous renal and cloacal defects. Taken together, these studies indicate for the first time that gldc function serves an essential role in regulating renal progenitor development by modulating glycine levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...