Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 12(4): 1154-1162, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29379178

RESUMEN

Aerosolization of soil-dust and organic aggregates in sea spray facilitates the long-range transport of bacteria, and likely viruses across the free atmosphere. Although long-distance transport occurs, there are many uncertainties associated with their deposition rates. Here, we demonstrate that even in pristine environments, above the atmospheric boundary layer, the downward flux of viruses ranged from 0.26 × 109 to >7 × 109 m-2 per day. These deposition rates were 9-461 times greater than the rates for bacteria, which ranged from 0.3 × 107 to >8 × 107 m-2 per day. The highest relative deposition rates for viruses were associated with atmospheric transport from marine rather than terrestrial sources. Deposition rates of bacteria were significantly higher during rain events and Saharan dust intrusions, whereas, rainfall did not significantly influence virus deposition. Virus deposition rates were positively correlated with organic aerosols <0.7 µm, whereas, bacteria were primarily associated with organic aerosols >0.7 µm, implying that viruses could have longer residence times in the atmosphere and, consequently, will be dispersed further. These results provide an explanation for enigmatic observations that viruses with very high genetic identity can be found in very distant and different environments.


Asunto(s)
Microbiología del Aire , Bacterias/aislamiento & purificación , Virus/aislamiento & purificación , Aerosoles , África del Norte , Atmósfera , Polvo/análisis , Lluvia
2.
Viruses ; 9(5)2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28534829

RESUMEN

Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae. This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla, other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla, viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla, but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes.


Asunto(s)
Chlorophyta/genética , Chlorophyta/virología , Virus ADN/genética , Transferencia de Gen Horizontal/genética , Genoma Viral/genética , Phycodnaviridae/genética , Secuencia de Bases , Chlorophyta/clasificación , ADN Polimerasa Dirigida por ADN/genética , Ambiente , Genes Virales , Variación Genética , Biología Marina , Phycodnaviridae/clasificación , Phycodnaviridae/aislamiento & purificación , Phycodnaviridae/patogenicidad , Filogenia , Fitoplancton/virología
3.
Front Microbiol ; 6: 265, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25914678

RESUMEN

Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant "nr" database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

4.
Front Microbiol ; 5: 703, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566218

RESUMEN

Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.

5.
Proc Natl Acad Sci U S A ; 108(28): 11506-11, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21709214

RESUMEN

The Chesapeake Bay, a seasonally variable temperate estuary, provides a natural laboratory for examining the fluctuations and impacts of viral lysis on aquatic microorganisms. Viral abundance (VA) and viral production (VP) were monitored in the Chesapeake Bay over 4 1/2 annual cycles, producing a unique, long-term, interannual study of virioplankton production. High and dynamic VP rates, averaging 7.9 × 10(6) viruses per mL per h, indicate that viral lysis impacts a significant fraction of microorganisms in the Chesapeake. Viral-mediated bacterial mortality, VA, VP, and organic carbon release all displayed similar interannual and seasonal trends with higher values in 2003 and 2006 than in 2004 and 2005 and peaks in early spring and summer. Surprisingly, higher rates of viral lysis occurred in winter, resulting in a magnified effect of viral lysis on bacterioplankton during times of reduced productivity. Viral lysis directly impacted the organic carbon pool, contributing on average 76 µg of C per L per d, an amount capable of sustaining ∼55% of Chesapeake Bay bacterial production. The observed repeating interannual patterns of VP and lysis are likely interlinked with seasonal cycles of host abundance and diversity, which are in turn driven by annual cycles in environmental conditions, emphasizing the complex interplay of seasonality and microbial ecology in the Chesapeake Bay.


Asunto(s)
Ecosistema , Plancton/virología , Bacterias/virología , Biodiversidad , Ciclo del Carbono , Delaware , Agua Dulce/microbiología , Agua Dulce/virología , Estaciones del Año , Agua de Mar/microbiología , Agua de Mar/virología
6.
Environ Microbiol ; 11(11): 2904-14, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19703217

RESUMEN

Viruses saturate the world around us, yet a basic understanding of how viral impacts on microbial host organisms vary over days to hours, which typify the replication cycles of aquatic viruses, remains elusive. Thus, diel patterns of viral production (VP) in Chesapeake Bay surface waters were examined on five sampling dates. Day-to-day variations in VP in the Chesapeake and coastal California surface waters were also investigated. Significant variations in VP were detected over 24 h cycles during four of five studies, but rates did not vary significantly over the course of a few days in either location. Diel patterns of VP displayed seasonality with shorter viral assemblage turnover times and shorter times to maximum viral abundance in summer, implying shorter replication cycles for virus-host systems in warmer months. No correlation was found between VP and time of day, likely due to seasonal changes in the diel patterns of VP. This analysis significantly increases our knowledge of the short-term patterning of in situ VP, and thus viral impacts, and suggests that variations in viral biology in response to changes in host communities or physio-chemical properties affect both diel and seasonal cycles and magnitudes of VP.


Asunto(s)
Bacterias/virología , Bacteriófagos/aislamiento & purificación , Ecosistema , Agua de Mar/virología , Carga Viral , California , Recuento de Colonia Microbiana , Maryland , Estaciones del Año , Factores de Tiempo
7.
Methods Mol Biol ; 501: 3-14, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19066805

RESUMEN

Viruses are omnipresent and extraordinarily abundant in the microbial ecosystems of water, soil, and sediment. In nearly every reported case for aquatic and porous media environments (soils and sediments) viral abundance exceeds that of co-occurring host populations by 10-100-fold. If current estimates based on metagenome DNA sequence data are correct, then viruses represent the largest reservoir of unknown genetic diversity on Earth. Microscopy and molecular genetic tools have been critical in demonstrating that viruses are a dynamic component of microbial ecosystems capable of significantly influencing the productivity and population biology of their host communities. Moreover, these approaches have begun to describe and constrain the immense genetic diversity of viral communities. A critical first step in the application of many cultivation-independent approaches to virus ecology is obtaining a concentrate of viruses from an environmental sample. Culture-dependent methods also rely on viruses being present at a high enough abundance to detect. Here, methodological details for the isolation and concentration of viruses from water, soil, and aquatic sediment samples are covered in detail.


Asunto(s)
Sedimentos Geológicos/virología , Microbiología del Suelo , Virus/aislamiento & purificación , Microbiología del Agua , Filtración/métodos , Ultracentrifugación/métodos
8.
Appl Environ Microbiol ; 74(9): 2612-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18344351

RESUMEN

Recent discoveries have uncovered considerable genetic diversity among aquatic viruses and raised questions about the variability of this diversity within and between environments. Studies of the temporal and spatial dynamics of aquatic viral assemblages have been hindered by the lack of a common genetic marker among viruses for rapid diversity assessments. Randomly amplified polymorphic DNA (RAPD) PCR bypasses this obstacle by sampling at the genetic level without requiring viral isolation or previous sequence knowledge. In this study, the utility of RAPD-PCR for assessing DNA viral richness within Chesapeake Bay water samples was evaluated. RAPD-PCR using single 10-mer oligonucleotide primers successfully produced amplicons from a variety of viral samples, and banding patterns were highly reproducible, indicating that each band likely represents a single amplicon originating from viral template DNA. In agreement with observations from other community profiling techniques, resulting RAPD-PCR banding patterns revealed more temporal than spatial variability in Chesapeake Bay virioplankton assemblages. High-quality hybridization probes and sequence information were also easily generated from single RAPD-PCR products or whole reactions. Thus, the RAPD-PCR technique appears to be practical and efficient for routine use in high-resolution viral diversity studies by providing assemblage comparisons through fingerprinting, probing, or sequence information.


Asunto(s)
Virus ADN/clasificación , Virus ADN/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Agua de Mar/virología , Análisis por Conglomerados , Cartilla de ADN , ADN Viral/química , ADN Viral/genética , Maryland , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA