Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(15): 2256-2266, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38517319

RESUMEN

A conductive nanocomposite consisting of heparin-stabilized gold nanoparticles embedded in graphene was prepared and characterized to develop an electrochemical sensor for the determination of esculetin in tea and jam samples. The gold nanoparticles were characterized by spectroscopic and microscopic techniques. The different proportions of graphene in the nanocomposite were evaluated and characterized by electrochemical practices. The heterostructure material on the glassy carbon electrode with esculetin showed π-π stacking interactions with an adsorption-controlled process. The voltammetric profile of esculetin using the proposed nanomaterial presented oxidation and reduction peaks at +0.61 and +0.58 V vs. Ag/AgCl, respectively, facilitating the electron transfer with esculetin through the transfer of two moles of protons and two moles of electrons per mole of esculetin. Using optimized conditions and square wave voltammetry, the calibration curve was obtained with two linear ranges, from 0.1 to 20.5 µmol L-1, with a detection limit of 43.0 nmol L-1. The electrochemical sensor showed satisfactory results for repeatability and stability, although interferences were observed in the presence of high concentrations of ascorbic acid or quercetin. The sensor was successfully applied in the determination of esculetin in samples of mulberry jam, white mulberry leaf tea, and white mulberry powder tea, presenting adequate recovery ranges. This directive provides valuable insights for the development of novel electrochemical sensors using heparin-based conductive nanomaterials with improved sensitivity and sensibility.


Asunto(s)
Grafito , Nanopartículas del Metal , Topos , Umbeliferonas , Animales , Grafito/química , Oro/química , Heparina , Nanopartículas del Metal/química ,
2.
Biosensors (Basel) ; 13(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38131797

RESUMEN

Butylated hydroxyanisole (BHA) is a synthetic phenolic antioxidant widely used in various food matrices to prevent oxidative rancidity. However, its presence has been associated with liver damage and carcinogenesis in animals. Thus, an electrochemical sensor was built using a composite of gold nanoparticles synthesized in peach extract (Prunus persica (L.) Batsch) and graphene. Peach extract served as a reducing and stabilizing agent for gold nanoparticles, as a dispersing agent for graphene, and as a film former to immobilize the composite on the surface of a glassy carbon electrode. The gold nanoparticles were characterized using spectroscopic and microscopic techniques, and the electrodes were electrochemically characterized using electrochemical impedance spectroscopy and cyclic voltammetry. The sensor provided higher current responses and lower charge transfer resistances compared to the unmodified glassy carbon electrode. Under the established optimized working conditions (0.1 mol L-1 Britton-Robinson buffer, pH 4.0, and differential pulse voltammetry), the calibration curve exhibited a linear range from 0.2 to 9.8 µmol L-1, with a detection limit of 70 nmol L-1. The proposed sensor represented a sensitive and practical analytical tool for the accurate determination of BHA in mayonnaise samples.


Asunto(s)
Grafito , Nanopartículas del Metal , Prunus persica , Grafito/química , Antioxidantes , Oro/química , Hidroxianisol Butilado , Nanopartículas del Metal/química , Carbono/química , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
3.
J Pharm Biomed Anal ; 236: 115681, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37672903

RESUMEN

In this study, a selective and sensitive electrochemical approach for determining hydroxychloroquine (HCQ) was proposed. A novel nanocomposite based on gold nanoparticles synthesized by green synthesis in an extract of white pitaya (Hylocereus undatus) (AuNP-Ext) decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs) was presented. AuNP-Ext was characterized by ultraviolet-visible spectroscopy and the f-MWCNTs/AuNP-Ext nanocomposite by transmission electron microscopy. The nanocomposite was used to modify a glassy carbon electrode (GCE). Using the f-MWCNT-AuNP-Ext/GCE sensor, an irreversible oxidation peak at +0.74 V vs. Ag/AgCl was verified by HCQ. The calibration plot was studied in two linear ranges, from 0.03 to 3.5 µmol/L and from 3.5 to 17.0 µmol/L, with a limit of detection of 0.0093 µmol/L and a limit of quantification of 0.031 µmol/L, regarding the first linear range. The proposed sensor was successfully applied to the determination of HCQ in pharmaceutical and clinical samples without any special purification, separation or pre-treatment steps. The accuracy was verified by UV-Vis spectrometry, and this revealed that the proposed method was accurate and precise, as evidenced by F- and t-tests.

4.
Chemosphere ; 334: 139016, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37224974

RESUMEN

The monitoring of endocrine disruptors in the environment is one of the main strategies in the investigation of potential risks associated with exposure to these chemicals. Bisphenol A is one of the most prevalent endocrine-disrupting compounds and is prone to leaching out from polycarbonate plastic in both freshwater and marine environments. Additionally, microplastics also can leach out bisphenol A during their fragmentation in the water environment. In the quest for a highly sensitive sensor to determine bisphenol A in different matrices, an innovative bionanocomposite material has been achieved. This material is composed of gold nanoparticles and graphene, and was synthesized using a green approach that utilized guava (Psidium guajava) extract for reduction, stabilization, and dispersion purposes. Transmission electron microscopy images revealed well-spread gold nanoparticles with an average diameter of 31 nm on laminated graphene sheets in the composite material. An electrochemical sensor was developed by depositing the bionanocomposite onto a glassy carbon surface, which displayed remarkable responsiveness towards bisphenol A. Experimental conditions such as the amount of graphene, extract: water ratio of bionanocomposite and pH of the supporting electrolyte were optimized to improve the electrochemical performance. The modified electrode displayed a marked improvement in current responses for the oxidation of bisphenol A as compared to the uncovered glassy carbon electrode. A calibration plot was established for bisphenol A in 0.1 mol L-1 Britton-Robinson buffer (pH 4.0), and the detection limit was determined to equal to 15.0 nmol L-1. Recovery data from 92 to 109% were obtained in (micro)plastics samples using the electrochemical sensor and were compared with UV-vis spectrometry, demonstrating its successful application with accurate responses.


Asunto(s)
Grafito , Nanopartículas del Metal , Grafito/química , Plásticos , Oro/química , Nanopartículas del Metal/química , Carbono , Agua
5.
Materials (Basel) ; 16(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36770031

RESUMEN

A ratiometric electrochemical sensor based on a carbon paste electrode modified with quinazoline-engineered ZnFe Prussian blue analogue (PBA-qnz) was developed for the determination of herbicide butralin. The PBA-qnz was synthesized by mixing an excess aqueous solution of zinc chloride with an aqueous solution of precursor sodium pentacyanido(quinazoline)ferrate. The PBA-qnz was characterized by spectroscopic and electrochemical techniques. The stable signal of PBA-qnz at +0.15 V vs. Ag/AgCl, referring to the reduction of iron ions, was used as an internal reference for the ratiometric sensor, which minimized deviations among multiple assays and improved the precision of the method. Furthermore, the PBA-qnz-based sensor provided higher current responses for butralin compared to the bare carbon paste electrode. The calibration plot for butralin was obtained by square wave voltammetry in the range of 0.5 to 30.0 µmol L-1, with a limit of detection of 0.17 µmol L-1. The ratiometric sensor showed excellent precision and accuracy and was applied to determine butralin in lettuce and potato samples.

6.
Mikrochim Acta ; 189(8): 269, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35788785

RESUMEN

The synthesis and characterization of a novel titania/silica hybrid xerogel subsequently modified with 4-methylpyridine (4-Pic), named TiSi4Pic+Cl- is reported. The physicochemical, structural and thermal properties of TiSi4Pic+Cl- were characterized using several techniques. Anchoring cobalt(II) phthalocyanine (CoTsPc) in TiSi4Pic+Cl- showed greater electroanalytical sensitivity over other sensors built with these materials. A novel electroanalytical method was developed to quantify the noxious biocide pentachlorophenol (PCP) for environmental monitoring. The peak current intensity increased linearly with the analyte concentration in the range between 0.99 and 4.21 µmol L-1, based on the oxidation process (at + 0.81 V, vs. Ag/AgCl) of differential pulse voltammetry (DPV). The estimated limit of detection (LOD) was 29 nmol L-1. Recovery tests in environmental samples showed a PCP concentration of 2.05 ± 0.03 µmol L-1 (n = 3). The method was statistically validated by comparing the PCP concentrations with those obtained by molecular absorption spectrometry and high-performance liquid chromatography-diode array detection (HPLC-DAD). At a 95% confidence level, no difference between the results was found, therefore confirming the excellent accuracy of the proposed method.


Asunto(s)
Pentaclorofenol , Cobalto/química , Electrodos , Indoles , Isoindoles , Dióxido de Silicio , Titanio
7.
Ecotoxicol Environ Saf ; 206: 111181, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861008

RESUMEN

Phenylurea herbicides are persistent contaminants, which leads their transport to the surface and ground waters, affecting human and aquatic organisms. Different analytical methods have been reported for the detection of phenylureas; however, several of them are expensive, time-consuming, and require complex pretreatment steps. Here, we show a simple method for the simultaneous electrochemical determination of two phenylurea herbicides by differential pulse adsorptive stripping voltammetry (DPAdSV) using a modified platinum/chitosan electrode. The one-step synthesized platinum/chitosan PtNPs/CS was successfully characterized by TEM, XRPD, and FT-IR, and applied through the sensing platform designated as PtNPs/CS/GCE. This bio-based modified electrode is proposed for the first time for the individual and/or simultaneous electrochemical detection of the phenylurea herbicides diuron and isoproturon compounds extensively used worldwide that present a very similar chemical structure. Electrochemical and interfacial characteristics of the modified electrode were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It was found that the oxidation mechanism of diuron and isoproturon occurs in two different pathways, with a peak-to-peak definition of ca. 0.15 V. Under differential pulse adsorptive stripping voltammetry (DPAdSV) optimized conditions, the limit of detection (LOD) was estimated as 7 µg L-1 for isoproturon and 20 µg L-1 for diuron (Ed = +0.8 V; td = 100 s). The proposed method was successfully applied to the determination of both analytes in river water samples, at three different levels, with a recovery range of 90-110%. The employment of the bio-based sensing platform PtNPs/CS/GCE allows a novel and easy analytical method to the multi-component phenylurea herbicides detection.


Asunto(s)
Quitosano/química , Diurona/análisis , Herbicidas/análisis , Compuestos de Fenilurea/análisis , Platino (Metal)/química , Contaminantes Químicos del Agua/análisis , Adsorción , Brasil , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Nanocompuestos/química , Ríos/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...