Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 97: 474-489, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31398471

RESUMEN

BACKGROUND: The unique phenomenon of endothelial antibody capture (endocapt) leads to site-specific accumulation of antibodies on the endothelium after its locoregional injection. The potential of this phenomenon has already been demonstrated in animal models. In the present study, the translational potential of several human endothelium-specific antibodies for their use in the endocapt-based approach was analysed. METHODS: The binding of different endothelium-surface specific monoclonal antibody clones was analysed in human tissue and in endothelial cells using image-based immunofluorescence and the determination of half-maximal effective concentration (EC50). The potential of endocapt-based locoregional application of antibodies or antibody-coated liposomes was analysed ex vivo using isolated mouse liver perfusion and in vivo using superselective injection in tumour models. RESULTS: Eight out of ten antibody clones were assigned to the group of "fast binding antibodies". Different antibody clones showed various binding kinetics to the same endothelial marker whereas the binding kinetics of single antibody clones was independent from the tissue type. Anti-CD49e, anti-CD31, anti-CD34 and anti-CD102 antibodies showed the lowest EC50 of antibody binding concentration and constant results in EC50 determination of antibody binding to cells and human tissue. Experimental studies using anti-mouse CD49e antibody and coated immunoliposomes confirmed their effective capture by endothelial cells in vitro and in vivo by which fluorescent liver segment labelling was achieved. CONCLUSIONS: Our findings identify the high potential of several human antibody clones, especially anti-CD49e, -CD31, -CD34 and -CD102, for endocapt technology. We also propose important translational implications of these antibodies for image-guided liver surgery and for use of nanoparticles/immunoliposomes. Toxicological studies are indispensable for further translational development of new antibodies for endocapt. STATEMENT OF SIGNIFICANCE: The phenomenon of endothelial antibody capture (endocapt) leads to site-specific accumulation of antibodies on the endothelium after its locoregional injection. This phenomenon broadly prevents systemic circulation of the antibody or antibody-drug conjugates. In the present study, our findings identify several human antibody clones promising for endothelial capture technology. This study provided the experimental demonstration of liver segment labelling ex vivo using isolated mouse liver perfusion and in vivo using superselective injection in tumor models. In addition, this study proposed the important translational implications of selected antibodies for image-guided liver surgery and for use of nanoparticles/immunoliposomes.


Asunto(s)
Anticuerpos Monoclonales , Antígenos CD/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hígado , Nanopartículas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Hígado/citología , Hígado/metabolismo , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Distribución Tisular
2.
Hepatology ; 68(5): 1804-1816, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29734469

RESUMEN

The systemic drug circulation represents a source of adverse effects during tumor targeting. We studied the binding efficacy of endothelium-specific antibodies after a very short contact with an antigen target, along with assessing the intravascular capture and targeting potential of these antibodies after locoregional injection. Fast-binding anti-CD 146 (clone ME-9F1) and anti-CD31 (clone 390) antibodies were selected based on histological analysis of their binding activity. The efficacy of antibody capture by hepatic endothelium under different conditions was analyzed using an isolated liver perfusion model. The local enrichment of R-phycoerythrin and 125 I-conjugated antibody was studied in vivo in two hepatic tumor models using biodistribution, scintigraphic imaging, and fluorescence microscopy. Upon injection into the tumor-feeding artery, the antibody was immediately captured in the microvasculature during the first passage. At doses not exceeding the saturation level of endothelial epitopes, the capture efficacy was almost 90%. We showed that the efficacy of endothelial capture is controlled by factors such as antibody affinity, number of binding sites on the endothelium, and microvascular flow rate. The targeting potential of endothelial capture was experimentally proven in vivo using scintigraphic imaging and biodistribution analysis after locoregional intra-arterial injection of 125 I-labeled antibodies in hepatic tumor models. Conclusion: The unique phenomenon of endothelial capture can broadly prevent systemic circulation of the antibody or antibody-drug conjugates applied by intravascular injection and may have specific relevance for targeting of hepatic tumors.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Afinidad de Anticuerpos/inmunología , Endotelio/inmunología , Neoplasias Hepáticas/inmunología , Terapia Molecular Dirigida/métodos , Animales , Técnica del Anticuerpo Fluorescente , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
3.
Cancer Cell Int ; 15: 110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26612978

RESUMEN

BACKGROUND: The estrogen receptor-positive M13SV1 breast epithelial cell line was proposed to be a suitable in vitro model for breast cancer research since two derivatives with graduated tumorigenicity-M13SV1-R2-2 and M13SV1-R2-N1-are available for this cell line. In the present study, these three cell lines were comparatively examined for their morphological and their biochemical properties on the molecular level. METHODS: A transcriptomic approach (gene array analysis) was chosen to unravel differences in gene expression among the three cell lines. Network analysis was conducted to identify deregulated signaling pathways. Cellular viability was determined by impedance measurements as well as by neutral red uptake assay. Apoptosis was determined by using a caspase assay. For morphological characterization, cells were grown in three-dimensional cell culture, and cellular differentiation and spheroid formation was followed by immunofluorescence staining by using confocal laser scanning microscopy. RESULTS: The gene array results indicated that there were only marginal differences in gene expression among the three cell lines. Network analysis predicted the R2-N1 derivative (1) to display enhanced apoptosis and (2) to have a higher migration capability compared to its parent cell line M13SV1. Enhanced apoptosis was confirmed by elevated caspase activity, and increased migration was observed in 3D culture when cells migrated out of the globular spheroids. In 3D cell culture, all three cell lines similarly formed spheroids within three days, but there was no acini formation until day 21 which is indicated by a growth arrest around day 15, cellular polarization, and the formation of hollow lumen inside the spheroids. These characteristics, however, are crucial to study, e.g., the differentiation process of breast epithelial cells in vitro. CONCLUSION: Due to the molecular and morphological features, the M13SV1 cell line and its tumorigenic derivatives seem to be less suitable as in vitro models than other cell lines such as the MCF-10A cell line which displays proper acini formation in 3D culture.

4.
Planta Med ; 80(5): 415-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24652524

RESUMEN

Notopterygium roots (Qiang Huo) have been used in traditional Chinese medicine for treating colds, inflammatory diseases like rheumatoid arthritis, and as an analgesic. The anti-inflammatory activity of the roots of Notopterygium incisum has been evaluated by testing the inhibitory activity on nitric oxide production by inducible nitric oxide synthase. The apparent authenticity of the sample was checked by DNA sequence comparison. Using activity-guided isolation, different compounds were isolated and structurally characterized by means of NMR and mass spectroscopy. Eight polyacetylenes could be identified and were tested on their inhibitory activity on nitric oxide production in RAW 264.7 mouse macrophages using the Griess assay. Different 3-hydroxy allyl polyacetylenes exhibited significant activity (IC50: 8-acetoxyfalcarinol, 20.1 µM; falcarindiol, 9.2 µM; 9-epoxyfalcarindiol, 8.8 µM; and crithmumdiol, 23.6 µM).


Asunto(s)
Apiaceae/química , Óxido Nítrico/biosíntesis , Raíces de Plantas/química , Poliinos/farmacología , Animales , Línea Celular , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Poliinos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA