Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nano Lett ; 22(1): 517-523, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962401

RESUMEN

We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.


Asunto(s)
Microtúbulos , Protones , Biofisica , Citoplasma/fisiología , Concentración de Iones de Hidrógeno , Microtúbulos/metabolismo
2.
Clin Transl Sci ; 14(3): 847-858, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278334

RESUMEN

Positron emission tomography (PET) using 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG), a marker of energy metabolism and cell proliferation, is routinely used in the clinic to assess patient response to chemotherapy and to monitor tumor growth. Treatment with some tyrosine kinase inhibitors (TKIs) causes changes in blood glucose levels in both nondiabetic and diabetic patients. We evaluated the interaction of several classes of TKIs with human glucose transporter-1 (hGLUT-1) in FaDu and GIST-1 cells by measuring [3 H]2-deoxy-d-glucose ([3 H]2-DG) and [3 H]FDG uptake. Uptake of both was inhibited to varying extents by the TKIs, and representative TKIs from each class showed competitive inhibition of [3 H]2-DG uptake. In GIST-1 cells, [3 H]FDG uptake inhibition by temsirolimus and nilotinib was irreversible, whereas inhibition by imatinib, gefitinib, and pazopanib was reversible. Molecular modeling studies showed that TKIs form multiple hydrogen bonds with polar residues of the sugar binding site (i.e., Q161, Q282, Q283, N288, N317, and W388), and van der Waals interactions with the H-pocket site. Our results showed interaction of TKIs with amino acid residues at the glucose binding site to inhibit glucose uptake by hGLUT-1. We hypothesize that inhibition of hGLUT-1 by TKIs could alter glucose levels in patients treated with TKIs, leading to hypoglycemia and fatigue, although further studies are required to evaluate roles of other SLC2 and SLC5 members. In addition, TKIs could affect tumor [18 F]FDG uptake, increasingly used as a marker of tumor response. The hGLUT-1 inhibition by TKIs may have implications for routine [18 F]FDG-PET monitoring of tumor response in patients.


Asunto(s)
Fluorodesoxiglucosa F18/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Tomografía de Emisión de Positrones/métodos , Inhibidores de Proteínas Quinasas/farmacología , Sitios de Unión , Línea Celular Tumoral , Interacciones Farmacológicas , Transportador de Glucosa de Tipo 1/ultraestructura , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica
3.
Small ; 17(1): e2003560, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33295102

RESUMEN

Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2 cm2  (V s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.


Asunto(s)
Polímeros , Tubulina (Proteína) , Microtúbulos , Electricidad Estática
4.
Biochem Pharmacol ; 180: 114125, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32598947

RESUMEN

BACKGROUND: Colchicine is routinely used for its anti-inflammatory properties to treat gout and Familial Mediterranean fever. More recently, it was also shown to be of therapeutic benefit for another group of diseases in which inflammation is a key component, namely, cardiovascular disease. Whilst there is considerable interest in repurposing this alkaloid, it has a narrow therapeutic index and is associated with undesirable side effects and drug interactions. We, therefore, developed a derivatives of colchicine that preferentially target leukocytes to increase their potency and diminish their side effects. The anti-inflammatory activity of the colchicine derivatives was tested in experimental models of neutrophil activation by the etiological agent of gout, monosodium urate crystals (MSU). METHODS: Using a rational drug design approach, the structure of colchicine was modified to increase its affinity for ßVI-tubulin, a colchicine ligand preferentially expressed by immune cells. The ability of the colchicine analogues with the predicted highest affinity for ßVI-tubulin to dampen neutrophil responses to MSU was determined with in vitro assays that measure MSU-induced production of ROS, release of IL-1 and CXCL8/IL-8, and the increase in the concentration of cytoplasmic calcium. The anti-inflammatory property of the derivatives was assessed in the air pouch model of MSU-induced inflammation in mice. RESULTS: The most effective compound generated, CCI, is more potent than colchicine in all the in vitro assays. It inhibits neutrophil responses to MSU in vitro at concentrations 10-100-fold lower than colchicine. Similarly, in vivo, CCI inhibits the MSU-induced recruitment of leukocytes at a 10-fold lower concentration than colchicine when administered prior to or after MSU. CONCLUSIONS: We provide evidence that colchicine can be rendered more potent atinhibiting MSU-induced neutrophil activation and inflammation using a rational drug design approach. The development of compounds such as CCI will provide more efficacious drugs that will not only alleviate gout patients of their painful inflammatory episodes at significantly lower doses than colchicine, but also be of potential therapeutic benefit for patients with other diseases treated with colchicine.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colchicina/análogos & derivados , Colchicina/uso terapéutico , Gota/tratamiento farmacológico , Activación Neutrófila/efectos de los fármacos , Animales , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Simulación por Computador , Diseño de Fármacos , Gota/inmunología , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Tubulina (Proteína)/metabolismo
5.
iScience ; 11: 42-56, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30590250

RESUMEN

The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.

6.
J Biol Chem ; 293(25): 9696-9705, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29739852

RESUMEN

In the development of antiviral drugs that target viral RNA-dependent RNA polymerases, off-target toxicity caused by the inhibition of the human mitochondrial RNA polymerase (POLRMT) is a major liability. Therefore, it is essential that all new ribonucleoside analogue drugs be accurately screened for POLRMT inhibition. A computational tool that can accurately predict NTP binding to POLRMT could assist in evaluating any potential toxicity and in designing possible salvaging strategies. Using the available crystal structure of POLRMT bound to an RNA transcript, here we created a model of POLRMT with an NTP molecule bound in the active site. Furthermore, we implemented a computational screening procedure that determines the relative binding free energy of an NTP analogue to POLRMT by free energy perturbation (FEP), i.e. a simulation in which the natural NTP molecule is slowly transformed into the analogue and back. In each direction, the transformation was performed over 40 ns of simulation on our IBM Blue Gene Q supercomputer. This procedure was validated across a panel of drugs for which experimental dissociation constants were available, showing that NTP relative binding free energies could be predicted to within 0.97 kcal/mol of the experimental values on average. These results demonstrate for the first time that free-energy simulation can be a useful tool for predicting binding affinities of NTP analogues to a polymerase. We expect that our model, together with similar models of viral polymerases, will be very useful in the screening and future design of NTP inhibitors of viral polymerases that have no mitochondrial toxicity.


Asunto(s)
Antivirales/efectos adversos , Biología Computacional/métodos , ARN Polimerasas Dirigidas por ADN/química , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Ribonucleósidos/efectos adversos , Ribonucleósidos/química , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Conformación Proteica , Relación Estructura-Actividad , Transcripción Genética
7.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767055

RESUMEN

Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine, and expresses its target protein, it is immune to colchicine's cytotoxic action and the mechanism of this resistance is hitherto unknown. In the present paper, the molecular mechanisms responsible for colchicine resistance in C. autumnale are investigated and compared to human tubulin. To this end, homology models for C. autumnale α-ß tubulin heterodimer are created and molecular dynamics (MD) simulations together with molecular mechanics Poisson-Boltzmann calculations (MM/PBSA) are performed to determine colchicine's binding affinity for tubulin. Using our molecular approach, it is shown that the colchicine-binding site in C. autumnale tubulin contains a small number of amino acid substitutions compared to human tubulin. However, these substitutions induce significant reduction in the binding affinity for tubulin, and subsequently fewer conformational changes in its structure result. It is suggested that such small conformational changes are insufficient to profoundly disrupt microtubule dynamics, which explains the high resistance to colchicine by C. autumnale.


Asunto(s)
Colchicina/química , Colchicum/química , Modelos Moleculares , Tubulina (Proteína)/química , Colchicina/metabolismo , Colchicum/genética , Colchicum/metabolismo , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
Curr Top Med Chem ; 17(22): 2538-2558, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056740

RESUMEN

In this paper we provide an overview of the status of various colchicine derivatives in preclinical development with special focus on their anti-cancer activity. We discuss several groups of compounds that have been designed to differentially bind with specific affinities for tubulin ß isotypes, especially in regard to ßIII, which is commonly over-expressed in cancer. Computational prediction, protein-based and cell-based assays are summarized as well as some animal tests conducted on these compounds. It is concluded that an untapped potential exists for exploiting the colchicine scaffold as a pharmacophore with the possibility of increasing its affinity for tubulin isotypes overexpressed in cancer and decreasing it for normal cells thereby widening the therapeutic window.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Colchicina/síntesis química , Colchicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Protoplasma ; 254(3): 1163-1173, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27943021

RESUMEN

Tubulin is the target for very widely used anti-tumor drugs, including Vinca alkaloids, taxanes, and epothilones, which are an important component of chemotherapy in breast cancer and other malignancies. Paclitaxel and other tubulin-targeting drugs bind to the ß subunit of tubulin, which is a heterodimer of α and ß subunits. ß-Tubulin exists in the form of multiple isotypes, which are differentially expressed in normal and neoplastic cells and differ in their ability to bind to drugs. Among them, the ßIII isotype is overexpressed in many aggressive and metastatic cancers and may serve as a prognostic marker in certain types of cancer. The underpinning mechanisms accounting for the overexpression of this isotype in cancer cells are unclear. To better understand the role of ß-tubulin isotypes in cancer, we analyzed over 1000 clones from 90 breast cancer patients, sequencing their ß-tubulin isotypes, in search of novel mutations. We have elucidated two putative emerging molecular subgroups of invasive breast cancer, each of which involve mutations in the ßI-, ßIIA-, or ßIVB isotypes of tubulin that increase their structural, and possibly functional, resemblance to the ßIII isotype. A unifying feature of the first of the two subgroups is the mutation of the highly reactive C239 residue of ßI- or ßIVB-tubulin to L239, R239, Y239, or P239, culminating in probable conversion of these isotypes from ROS-sensitive to ROS-resistant species. In the second subgroup, ßI, ßIIA, and ßIVB have up to seven mutations to the corresponding residues in ßIII-tubulin. Given that ßIII-tubulin has emerged as a pro-survival factor, overexpression of this isotype may confer survival advantages to certain cancer cell types. In this mini-review, we bring attention to a novel mechanism by which cancer cells may undergo adaptive mutational changes involving alternate ß-tubulin isotypes to make them acquire some of the pro-survival properties of ßIII-tubulin. These "hybrid" tubulins, combining the sequences and/or properties of two wild-type tubulins (ßIII and either ßI, ßIIA, or ßIVB), are novel isotypes expressed solely in cancer cells and may contribute to the molecular understanding and stratification of invasive breast cancer and provide novel molecular targets for rational drug development.


Asunto(s)
Neoplasias de la Mama/genética , Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Secuencia de Aminoácidos , Animales , Antineoplásicos , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Pollos , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Ratones , Paclitaxel/farmacología , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/genética , Salmón , Análisis de Secuencia de ADN/veterinaria , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/metabolismo , Xenopus laevis
10.
Bioorg Med Chem Lett ; 26(16): 3855-61, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27449957

RESUMEN

We have synthesized new, biologically active mono- and di-substituted 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives bearing electron withdrawing groups and electron donating groups. These derivative structures were characterized by their spectral and analytical data. The newly synthesized hexahydropyrazole analogues were evaluated for their in vitro anticancer activity against breast and lung cancer cell lines using a cytotoxicity bioassay. To understand their mechanism of action, tubulin binding assays were performed which pointed to their binding to microtubules in a mode similar to but not identical to colchicine, as evidenced by their KD value evaluation. Computational docking studies also suggested binding near the colchicine binding site on tubulin. These results were further confirmed by colchicine-binding assays on the most active compounds, which indicated that they bound to tubulin near but not at the colchicine site. The moderate cytotoxic effects of these compounds may be due to the presence of electron donating groups on the para-position of the phenyl ring, along with the hexahydropyrazole core nucleus. The observed anti-cancer activity based on inhibition of microtubule formation may be helpful in designing more potent compounds with a hexahydropyrazole moiety.


Asunto(s)
Antineoplásicos/síntesis química , Pirazoles/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Ciclopentanos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Pirazoles/síntesis química , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Moduladores de Tubulina/toxicidad
11.
J Am Soc Mass Spectrom ; 27(5): 876-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26944280

RESUMEN

Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αß-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.


Asunto(s)
Antineoplásicos/metabolismo , Descubrimiento de Drogas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/análisis , Química Encefálica , Colchicina/análogos & derivados , Colchicina/análisis , Colchicina/metabolismo , Unión Proteica , Porcinos , Moduladores de Tubulina/análisis
13.
Cell Physiol Biochem ; 36(3): 1069-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26112900

RESUMEN

BACKGROUND/AIMS: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. METHODS: The enzymatic activity of human CD45, PTP1B, LAR, bacterial YopH was assayed under the cell-free conditions, and activity of cellular CD45 in human Jurkat cell lysates. The molecular docking and molecular dynamics were performed to evaluate the peracids binding to the CD45 active site. RESULTS: Here we demonstrate that peracids reduce enzymatic activity of recombinant CD45, PTP1B, LAR, YopH and cellular CD45. Our studies indicate that peracids are more potent inhibitors of CD45 than hydrogen peroxide (with an IC50 value equal to 25 nM for peroctanoic acid and 8 µM for hydrogen peroxide). The experimental data show that the inactivation caused by peracids is dependent on hydrocarbon chain length of peracids with maximum inhibitory effect of medium-chain peracids (C8-C12 acyl chain), which correlates with calculated binding affinities to the CD45 active site. CONCLUSION: Peracids are potent inhibitors of PTPs with the strongest inhibitory effect observed for medium-chain peracids.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Peróxidos/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/química , Dominio Catalítico , Extractos Celulares/química , Pruebas de Enzimas , Humanos , Peróxido de Hidrógeno/química , Células Jurkat , Cinética , Antígenos Comunes de Leucocito/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido Peracético/química , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Recombinantes/química
14.
PLoS One ; 10(6): e0129168, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052950

RESUMEN

Our previous work identified an intermediate binding site for taxanes in the microtubule nanopore. The goal of this study was to test derivatives of paclitaxel designed to bind to this intermediate site differentially depending on the isotype of ß-tubulin. Since ß-tubulin isotypes have tissue-dependent expression--specifically, the ßIII isotype is very abundant in aggressive tumors and much less common in normal tissues--this is expected to lead to tubulin targeted drugs that are more efficacious and have less side effects. Seven derivatives of paclitaxel were designed and four of these were amenable for synthesis in sufficient purity and yield for further testing in breast cancer model cell lines. None of the derivatives studied were superior to currently used taxanes, however computer simulations provided insights into the activity of the derivatives. Our results suggest that neither binding to the intermediate binding site nor the final binding site is sufficient to explain the activities of the derivative taxanes studied. These findings highlight the need to iteratively improve on the design of taxanes based on their activity in model systems. Knowledge gained on the ability of the engineered drugs to bind to targets and bring about activity in a predictable manner is a step towards personalizing therapies.


Asunto(s)
Diseño de Fármacos , Microtúbulos/metabolismo , Taxoides/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Western Blotting , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Docetaxel , Humanos , Concentración 50 Inhibidora , Microtúbulos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Paclitaxel/química , Paclitaxel/farmacología , Permeabilidad/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Taxoides/química , Termodinámica , Tubulina (Proteína)/metabolismo
15.
Theor Biol Med Model ; 11: 52, 2014 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-25542608

RESUMEN

A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.


Asunto(s)
Simulación por Computador , Entropía , Simulación de Dinámica Molecular
16.
Chem Biol Drug Des ; 82(1): 60-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23480279

RESUMEN

The binding free energies on human tubulin of selected colchicine and thiocolchicine compounds were determined. Two methods were used for the determination of binding free energies: one is based on theoretical prediction simulating the dissociation of the compound from tubulin using a series of molecular dynamics simulations, and the other method involves a series of experiments that measured the affinity of the compound on a synthetically expressed and purified tubulin protein using a spectrofluorometric technique.


Asunto(s)
Colchicina/química , Tubulina (Proteína)/química , Sitios de Unión , Colchicina/metabolismo , Dimerización , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Fluorescencia , Termodinámica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
17.
Pharm Res ; 29(11): 3007-21, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22833053

RESUMEN

PURPOSE: To explore possible ways in which yew tree tubulin is naturally resistant to paclitaxel. While the yew produces a potent cytotoxin, paclitaxel, it is immune to paclitaxel's cytotoxic action. METHODS: Tubulin sequence data for plant species were obtained from Alberta 1000 Plants Initiative. Sequences were assembled with Trinity de novo assembly program and tubulin identified. Homology modeling using MODELLER software was done to generate structures for yew tubulin. Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann calculations were performed with the Amber package to determine binding affinity of paclitaxel to yew tubulin. ClustalW2 program and PHYLIP package were used to perform phylogenetic analysis on plant tubulin sequences. RESULTS: We specifically analyzed several important regions in tubulin structure: the high-affinity paclitaxel binding site, as well as the intermediate binding site and microtubule nanopores. Our analysis indicates that the high-affinity binding site contains several substitutions compared to human tubulin, all of which reduce the binding energy of paclitaxel. CONCLUSIONS: The yew has achieved a significant reduction of paclitaxel's affinity for its tubulin by utilizing several specific residue changes in the binding pocket for paclitaxel.


Asunto(s)
Paclitaxel/química , Taxus/química , Árboles/química , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Paclitaxel/farmacología , Filogenia , Homología de Secuencia de Aminoácido , Taxus/genética , Termodinámica , Árboles/genética , Tubulina (Proteína)/metabolismo
18.
PLoS One ; 7(12): e52495, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300686

RESUMEN

Hydrogen peroxide induces oxidation and consequently inactivation of many protein tyrosine phosphatases. It was found that hydrogen peroxide, in the presence of carboxylic acids, was efficiently activated to form even more potent oxidant - peroxy acid. We have found that peroxytetradecanoic acid decreases the enzymatic activity of CD45 phosphatase significantly more than hydrogen peroxide. Our molecular docking computational analysis suggests that peroxytetradecanoic acid has a higher binding affinity to the catalytic center of CD45 than hydrogen peroxide.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/metabolismo , Simulación del Acoplamiento Molecular , Ácido Mirístico/metabolismo , Ácido Mirístico/farmacología , Ácidos Mirísticos/metabolismo , Ácidos Mirísticos/farmacología , Ácidos Carboxílicos/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Antígenos Comunes de Leucocito/química
19.
Int J Audiol ; 50(8): 503-18, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21689048

RESUMEN

OBJECTIVE: The purpose of this study was to develop a music quality rating test battery (MQRTB) and pilot test it by comparing appraisal ratings from cochlear implant (CI) recipients using the fine-structure processing (FSP) and high-definition continuous interleaved sampling (HDCIS) speech processing strategies. DESIGN: The development of the MQRTB involved three stages: (1) Selection of test items for the MQRTB; (2) Verification of its length and complexity with normally-hearing individuals; and (3) Pilot testing with CI recipients. STUDY SAMPLE: Part 1 involved 65 adult listeners, Part 2 involved 10 normally-hearing adults, and Part 3 involved five adult MED-EL CI recipients. RESULTS: The MQRTB consisted of ten songs, with ratings made on scales assessing pleasantness, naturalness, richness, fullness, sharpness, and roughness. Results of the pilot study, which compared FSP and HDCIS for music, indicated that acclimatization to a strategy had a significant effect on ratings (p < 0.05). When acclimatized to FSP, the group rated FSP as closer to 'exactly as I want it to sound' than HDCIS (p < 0.05), and that HDCIS sounded significantly sharper and rougher than FSP. However when acclimatized to HDCIS, there were no significant differences between ratings. There was no effect of song familiarity or genre on ratings. CONCLUSIONS: Overall the results suggest that the use of FSP as the default strategy for MED-EL recipients would have a positive effect on music appreciation, and that the MQRTB is an effective tool for assessing music sound quality.


Asunto(s)
Percepción Auditiva , Implantación Coclear/instrumentación , Implantes Cocleares , Corrección de Deficiencia Auditiva/psicología , Pérdida Auditiva/rehabilitación , Música , Personas con Deficiencia Auditiva/rehabilitación , Procesamiento de Señales Asistido por Computador , Estimulación Acústica , Adulto , Anciano , Emociones , Femenino , Pérdida Auditiva/psicología , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Personas con Deficiencia Auditiva/psicología , Proyectos Piloto , Diseño de Prótesis , Reconocimiento en Psicología
20.
Mol Cancer ; 9: 131, 2010 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-20509970

RESUMEN

BACKGROUND: A maximum entropy approach is proposed to predict the cytotoxic effects of a panel of colchicine derivatives in several human cancer cell lines. Data was obtained from cytotoxicity assays performed with 21 drug molecules from the same family of colchicine compounds and correlate these results with independent tubulin isoform expression measurements for several cancer cell lines. The maximum entropy method is then used in conjunction with computed relative binding energy values for each of the drug molecules against tubulin isotypes to which these compounds bind with different affinities. RESULTS: We have found by using our analysis that alphabetaI and alphabetaIII tubulin isoforms are the most important isoforms in establishing predictive response of cancer cell sensitivity to colchicine derivatives. However, since alphabetaI tubulin is widely distributed in the human body, targeting it would lead to severe adverse side effects. Consequently, we have identified tubulin isotype alphabetaIII as the most important molecular target for inhibition of microtubule polymerization and hence cancer cell cytotoxicity. Tubulin isotypes alphabetaI and alphabetaII are concluded to be secondary targets. CONCLUSIONS: The benefit of being able to correlate expression levels of specific tubulin isotypes and the resultant cell death effect is that it will enable us to better understand the origin of drug resistance and hence design optimal structures for the elimination of cancer cells. The conclusion of the study described herein identifies tubulin isotype alphabetaIII as a target for optimized chemotherapy drug design.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/farmacología , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias/tratamiento farmacológico , Tubulina (Proteína)/biosíntesis , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA