Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 837234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273916

RESUMEN

Improving tumor access for drug delivery is challenging, particularly in poorly perfused tumors. The availability of functional tumor blood vessels for systemic access is vital to allow drugs or imaging agents to accumulate in the tumor parenchyma. We subjected mice engineered to develop hepatocellular carcinoma (HCC), to treatment with tumor necrosis factor alpha (TNFα) conjugated to a CSG peptide (CSGRRSSKC). CSG binds to the laminin-nidogen-1 complex of the extracellular matrix (ECM) in HCC. When produced as a recombinant fusion protein, the TNFα-CSG functions as an ECM depletion agent via an immune-mediated mechanism to improve tumor perfusion. Tumor perfusion in HCC was dramatically improved after daily intravenous (i.v.) injection of 5 µg TNFα-CSG for five consecutive days. Following treatment, we assessed the tumor accessibility to accumulate an imaging agent, superparamagnetic iron-oxide nanoparticles (IO-NP). Here, we compared the passive delivery of an i.v. dose of IO-NP in HCC following ECM depletion after TNFα-CSG treatment, to the intratumoral accumulation of a comparable dose of CSG-targeted IO-NP in HCC with intact ECM. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate that when the tumor ECM is intact, HCC was resistant to the intratumoral uptake of IO-NP, even when the particles were tagged with CSG peptide. In contrast, pre-treatment with TNFα-CSG resulted in the highest IO-NP accumulation in tumors. These findings suggest poorly perfused HCC may be resistant to molecular-targeted imaging agents including CSG-IO-NP. We demonstrate that specific ECM depletion using TNFα-CSG improves nanoparticle delivery into poorly perfused tumors such as HCC.

2.
Pharmaceutics ; 13(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34683956

RESUMEN

Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide. CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours.

3.
Mol Cancer Ther ; 18(12): 2480-2489, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31467181

RESUMEN

Cancer precision medicine aims to predict the drug likely to yield the best response for a patient. Genomic sequencing of tumors is currently being used to better inform treatment options; however, this approach has had a limited clinical impact due to the paucity of actionable mutations. An alternative to mutation status is the use of gene expression signatures to predict response. Using data from two large-scale studies, The Genomics of Drug Sensitivity of Cancer (GDSC) and The Cancer Therapeutics Response Portal (CTRP), we investigated the relationship between the sensitivity of hundreds of cell lines to hundreds of drugs, and the relative expression levels of the targets these drugs are directed against. For approximately one third of the drugs considered (73/222 in GDSC and 131/360 in CTRP), sensitivity was significantly correlated with the expression of at least one of the known targets. Surprisingly, for 8% of the annotated targets, there was a significant anticorrelation between target expression and sensitivity. For several cases, this corresponded to drugs targeting multiple genes in the same family, with the expression of one target significantly correlated with sensitivity and another significantly anticorrelated suggesting a possible role in resistance. Furthermore, we identified nontarget genes that are significantly correlated or anticorrelated with drug sensitivity, and find literature linking several to sensitization and resistance. Our analyses provide novel and important insights into both potential mechanisms of resistance and relative efficacy of drugs against the same target.


Asunto(s)
Expresión Génica/genética , Medicina de Precisión , Humanos , Sensibilidad y Especificidad
4.
Blood ; 111(4): 1946-50, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18063753

RESUMEN

Hemopoietic lineage switch (Hls) 5 and 7 were originally isolated as genes up-regulated during an erythroid-to-myeloid lineage switch. We have shown previously that Hls7/Mlf1 imposes a monoblastoid phenotype on erythroleukemic cells. Here we show that Hls5 impedes erythroid maturation by restricting proliferation and inhibiting hemoglobin synthesis; however, Hls5 does not influence the morphology of erythroid cells. Under the influence of GATA-1, Hls5 relocates from cytoplasmic granules to the nucleus where it associates with both FOG-1 and GATA-1. In the nucleus, Hls5 is able to suppress GATA-1-mediated transactivation and reduce GATA-1 binding to DNA. We conclude that Hls5 and Hls7/Mlf1 act cooperatively to induce biochemical and phenotypic changes associated with erythroid/myeloid lineage switching.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Diferenciación Celular/fisiología , Factor de Transcripción GATA1/fisiología , Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Cartilla de ADN , Eritropoyetina/farmacología , Globinas/genética , Humanos , Leucemia Eritroblástica Aguda , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología
5.
J Biol Chem ; 281(50): 38791-800, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17008314

RESUMEN

Myeloid leukemia factor 1 (MLF1) is an oncoprotein associated with hemopoietic lineage commitment and acute myeloid leukemia. Here we show that Mlf1 associated with a novel binding partner, Mlf1-associated nuclear protein (Manp), a new heterogeneous nuclear ribonucleoprotein (hnRNP) family member, related to hnRNP-U. Manp localized exclusively in the nucleus and could redirect Mlf1 from the cytoplasm into the nucleus. The nuclear content of Mlf1 was also regulated by 14-3-3 binding to a canonical 14-3-3 binding motif within the N terminus of Mlf1. Significantly Mlf1 contains a functional nuclear export signal and localized primarily to the nuclei of hemopoietic cells. Mlf1 was capable of binding DNA, and microarray analysis revealed that it affected the expression of several genes, including transcription factors. In summary, this study reveals that Mlf1 translocates between nucleus and cytoplasm, associates with a novel hnRNP, and influences gene expression.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , ADN Complementario , Proteínas de Unión al ADN , Datos de Secuencia Molecular , Unión Proteica , Proteínas/química , Proteínas/genética
6.
Oncogene ; 23(29): 5105-9, 2004 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15122318

RESUMEN

Myeloid leukemia factor 1 (MLF1) is a novel oncoprotein involved in translocations associated with acute myeloid leukemia (AML), especially erythroleukemias. In this study, we demonstrate that ectopic expression of Mlf1 prevented J2E erythroleukemic cells from undergoing biological and morphological maturation in response to erythropoietin (Epo). We show that Mlf1 inhibited Epo-induced cell cycle exit and suppressed a rise in the cell cycle inhibitor p27(Kip1). Unlike differentiating J2E cells, Mlf1-expressing cells did not downregulate Cul1 and Skp2, components of the ubiquitin E3 ligase complex SCF(Skp2) involved in the proteasomal degradation of p27(Kip1). In contrast, Mlf1 did not interfere with increases in p27(Kip1) and terminal differentiation initiated by thyroid hormone withdrawal from erythroid cells, or cytokine-stimulated maturation of myeloid cells. These data demonstrate that Mlf1 interferes with an Epo-responsive pathway involving p27(Kip1) accumulation, which inhibits cell cycle arrest essential for erythroid terminal differentiation.


Asunto(s)
Ciclo Celular , Eritropoyetina/farmacología , Proteínas/farmacología , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN , Ratones , Antígeno Nuclear de Célula en Proliferación/farmacología
7.
J Biol Chem ; 277(43): 40997-1008, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12176995

RESUMEN

A yeast two-hybrid screen was conducted to identify binding partners of Mlf1, an oncoprotein recently identified in a translocation with nucleophosmin that causes acute myeloid leukemia. Two proteins isolated in this screen were 14-3-3zeta and a novel adaptor, Madm. Mlf1 contains a classic RSXSXP sequence for 14-3-3 binding and is associated with 14-3-3zeta via this phosphorylated motif. Madm co-immunoprecipitated with Mlf1 and co-localized in the cytoplasm. In addition, Madm recruited a serine kinase, which phosphorylated both Madm and Mlf1 including the RSXSXP motif. In contrast to wild-type Mlf1, the oncogenic fusion protein nucleophosmin (NPM)-MLF1 did not bind 14-3-3zeta, had altered Madm binding, and localized exclusively in the nucleus. Ectopic expression of Madm in M1 myeloid cells suppressed cytokine-induced differentiation unlike Mlf1, which promotes maturation. Because the Mlf1 binding region of Madm and its own dimerization domain overlapped, the levels of Madm and Mlf1 may affect complex formation and regulate differentiation. In summary, this study has identified two partner proteins of Mlf1 that may influence its subcellular localization and biological function.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteínas 14-3-3 , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Células COS , Proteínas de Ciclo Celular , ADN Complementario , Proteínas de Unión al ADN , Dimerización , Humanos , Datos de Secuencia Molecular , Fosforilación , Pruebas de Precipitina , Proteínas/química , Receptores Citoplasmáticos y Nucleares , Homología de Secuencia de Aminoácido , Tirosina 3-Monooxigenasa/química , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...