Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
ACS Appl Nano Mater ; 6(16): 15204-15212, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37649834

RESUMEN

Titanium dioxide (TiO2) thin films are commonly used as photocatalytic materials. Here, we enhance the photocatalytic activity of devices based on titanium dioxide (TiO2) by combining nanostructured glass substrates with metallic plasmonic nanostructures. We achieve a three-fold increase of the catalyst's surface area through nanoscale, three-dimensional patterning of periodic, conical grids, which creates a broadband optical absorber. The addition of aluminum and gold activates the structures plasmonically and increases the optical absorption in the TiO2 films to above 70% in the visible and NIR spectral range. We demonstrate the resulting enhancement of the photocatalytic activity with organic dye degradation tests under different light sources. Furthermore, the pharmaceutical drug Carbamazepine, a common water pollutant, is reduced in the aqueous solution by up to 48% in 360 min. Our approach is scalable and potentially enables future solar-driven wastewater treatment.

2.
Sci Total Environ ; 903: 166540, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634730

RESUMEN

Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.

3.
Water Sci Technol ; 87(7): 1747-1763, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37051795

RESUMEN

The separate, advanced treatment of hospital wastewater might be a promising approach to prevent the dissemination of residual compounds of high environmental concern, like pharmaceuticals, viruses and pathogenic microorganisms. This study investigates the performance of a full-scale, on-site treatment plant, consisting of a membrane bioreactor and a subsequent ozonation, at a German hospital. We analysed the elimination of pharmaceutical residues, microbiological parameters and SARS-CoV-2 RNA fragments. Additionally, we conducted an orienting study on the practicability of implementing targeted wastewater monitoring at a hospital. Our results demonstrate that after 10 years of stable operation, the treatment plant works highly efficiently regarding the elimination of pharmaceuticals and bacterial indicators. Elimination rates for pharmaceutical substances were above 90%, and log reductions of up to 6 log10 units for microbiological parameters were achieved. SARS-CoV-2 RNA could be detected and quantified in the influent but not in the effluent. The RNA load in the raw wastewater showed good correspondence with COVID-19 case numbers in the hospital. We showed that the full-scale on-site treatment of hospital wastewater is technically feasible and contributes to sustainable hospital effluent management and that monitoring biological markers on the building level might be a useful complementary tool for disease surveillance.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , SARS-CoV-2 , COVID-19/epidemiología , ARN Viral , Hospitales , Alemania , Preparaciones Farmacéuticas
4.
J Hazard Mater ; 449: 130981, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801715

RESUMEN

The discovery of new disinfection by-products (DBPs) is still a rarely investigated research area in past studies. In particular, compared to freshwater pools, therapeutic pools with their unique chemical composition have rarely been investigated for novel DBPs. Here we have developed a semi-automated workflow that combines data from target and non-target screening, calculated and measured toxicities into a heat map using hierarchical clustering to assess the pool's overall potential chemical risk. In addition, we used complementary analytical techniques such as positive and negative chemical ionization to demonstrate how novel DBPs can be better identified in future studies. We identified two representatives of the haloketones (pentachloroacetone, and pentabromoacetone) and tribromo furoic acid detected for the first time in swimming pools. Non-target screening combined with target analysis and toxicity assessment may help to define risk-based monitoring strategies in the future, as required by regulatory frameworks for swimming pool operations worldwide.


Asunto(s)
Desinfectantes , Piscinas , Contaminantes Químicos del Agua , Desinfección/métodos , Desinfectantes/análisis , Contaminantes Químicos del Agua/química , Agua
5.
Sci Total Environ ; 856(Pt 2): 159265, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206900

RESUMEN

Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Purificación del Agua , Filtración/métodos , ARN Ribosómico 16S , Purificación del Agua/métodos , Carbón Orgánico , Carbón Mineral
6.
Viruses ; 14(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36146683

RESUMEN

Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. The Omicron sub-variants BA.4/BA.5 have spread globally, displacing the preceding variants. Due to the severe transmissibility and immune escape potential of BA.4/BA.5, early monitoring was required to assess and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/BA.5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability for detecting BA.4/BA.5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022, and the presence of BA.4/BA.5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V and NGS sequencing. Finally, the mutant fractions were quantitatively monitored by digital PCR, confirming BA.4/BA.5 as the majority variant by 5 June 2022. In conclusion, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variants spreading independently of individual test capacities.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Aguas Residuales
7.
Sci Total Environ ; 845: 157338, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843322

RESUMEN

Thermal spas are gaining more and more popularity among the population because they are used for recreational purposes. Disinfecting these baths without losing the health benefits poses a challenge for swimming pool operators. Previous studies have mainly focused on regulated chlorinated DBPs in freshwater pools with no bromide or seawater pools with very high bromide content. Thermal water pools have a low bromide content and in combination with chlorine can lead to chlorinated, brominated and mixed halogenated DBP species. The occurrence of brominated and mixed halogenated DBPs in these types of pools is largely unexplored, with very few or limited studies published on regulated DBPs and even fewer on emerging DBP classes. In the field of swimming pool water disinfection, apart from extensive studies in the field of drinking water disinfection, only a few studies are known in which >39 halogenated and 16 non-halogenated disinfection by-products, including regulated trihalomethanes (THM) and haloacetic acids (HAA), were investigated in swimming pool water. Calculated bromine incorporation factor (BIF) demonstrated that even small amounts of bromide in swimming pool water can lead to a large shift in DBP species towards brominated and mixed halogenated DBPs. Dihaloacetonitriles (DHANs) accounted for >50% of the calculated cytotoxicity and genotoxicity on average. Comparison of the target analysis with the TOX showed that a major part of the measured TOX (69% on average) could be explained by the regulated classes THMs, HAAs, and the unregulated class of HANs. This study aims to help operators of swimming pools with bromide-containing water to gain a better understanding of DBP formation in future monitoring and to fill the knowledge gap that has existed so far on the occurrence of DBPs in thermal water pools.


Asunto(s)
Desinfectantes , Agua Potable , Piscinas , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfectantes/análisis , Desinfección , Halogenación , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 846: 157375, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850355

RESUMEN

Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , ARN Viral , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales
9.
J Hazard Mater ; 429: 128291, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236034

RESUMEN

Imperative decarbonization of water purification processes entails alternative regeneration methods for activated carbon. Regeneration based on changing dissociation equilibria, i.e. a major influencing factor on adsorption, usually requires the addition of acids/bases, but may also be triggered by temperature swing. Although adsorption and dissociation are both temperature-dependent phenomena, their conjunction has received little attention regarding trace organic compounds (TrOCs) and large temperature intervals, in particular above ΔT ≥ 50 ∘C. Therefore, we studied the adsorption equilibria of 16 TrOCs onto one granular activated carbon at temperatures ranging from 20 to 95 ∘C. The majority of compounds (12/16) exhibited an exothermic apparent adsorption enthalpy, while 3 out of 16 exhibited an endothermic apparent enthalpy. The range spanned from - 46 to + 50 kJ mol-1 (median at - 17 kJ mol-1). The possible origins of endothermic adsorption were discussed. A rationale of shifting pKa and thus changing dissociation of TrOCs was introduced and traded off against existing rationales, i.e. changing solute solubility, changing adsorption heat capacity, and saturation effects of the adsorbates. This knowledge may allow designing temperature swing adsorption processes that unlock the dissociation switch. The augmented process efficiency can thus provide the foundation for low-carbon emission, circular water purification processes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Temperatura , Termodinámica , Purificación del Agua/métodos
10.
Membranes (Basel) ; 12(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35323798

RESUMEN

The Middle East will face tremendous water scarcity by 2050, which can only be mitigated by large-scale reverse osmosis seawater desalination. However, the coastal land in the region is rare and costly, so outsourcing the desalination facility to artificial islands could become a realistic scenario. This study investigated the ecological and economic challenges and possible advantages of that water supply option by analysing conceptual alternatives for offshore membrane-based desalination plants of up to 600 MCM/y capacity. Key environmental impacts and mitigation strategies were identified, and a detailed economic analysis was conducted to compare the new approach to state-of-the-art. The economic analysis included calculating the cost of water production (WPC) and discussing the differences between offshore alternatives and a conventional onshore desalination plant. In addition, the study investigated the impact of a changing energy mix and potential carbon tax levels on the WPC until 2050. The results indicate that offshore desalination plants have ecological advantages compared to onshore desalination plants. Furthermore, the construction cost for the artificial islands has a much lower effect on the WPC than energy cost. In contrast, the impact of potential carbon tax levels on the WPC is significant. The specific construction cost ranges between 287 $/m2 and 1507 $/m2 depending on the artificial island type and distance to the shoreline, resulting in a WPC between 0.51 $/m3 and 0.59 $/m3. This work is the first to discuss the environmental and economic effects of locating large-scale seawater desalination plants on artificial islands.

11.
Water Res ; 195: 116940, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735627

RESUMEN

Organic micropollutants (MPs) are increasingly detected in water resources, which can be a concern for human health and the aquatic environment. Ultraviolet (UV) radiation based advanced oxidation processes (AOP) such as low-pressure mercury vapor arc lamp UV/H2O2 can be applied to abate these MPs. During UV/H2O2 treatment, MPs are abated primarily by photolysis and reactions with hydroxyl radicals (•OH), which are produced in situ from H2O2 photolysis. Here, a model is presented that calculates the applied UV fluence (Hcalc) and the •OH exposure (CT•OH,calc) from the abatement of two selected MPs, which act as internal probe compounds. Quantification of the UV fluence and hydroxyl radical exposure was generally accurate when a UV susceptible and a UV resistant probe compound were selected, and both were abated at least by 50 %, e.g., iopamidol and 5-methyl-1H-benzotriazole. Based on these key parameters a model was developed to predict the abatement of other MPs. The prediction of abatement was verified in various waters (sand filtrates of rivers Rhine and Wiese, and a tertiary wastewater effluent) and at different scales (laboratory experiments, pilot plant). The accuracy to predict the abatement of other MPs was typically within ±20 % of the respective measured abatement. The model was further assessed for its ability to estimate unknown rate constants for direct photolysis (kUV,MP) and reactions with •OH (k•OH,MP). In most cases, the estimated rate constants agreed well with published values, considering the uncertainty of kinetic data determined in laboratory experiments. A sensitivity analysis revealed that in typical water treatment applications, the precision of kinetic parameters (kUV,MP for UV susceptible and k•OH,MP for UV resistant probe compounds) have the strongest impact on the model's accuracy.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Peróxido de Hidrógeno , Radical Hidroxilo , Oxidación-Reducción , Fotólisis , Rayos Ultravioleta
12.
Sci Total Environ ; 751: 141750, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32861187

RESUMEN

Wastewater-based monitoring of the spread of the new SARS-CoV-2 virus, also referred to as wastewater-based epidemiology (WBE), has been suggested as a tool to support epidemiology. An extensive sampling campaign, including nine municipal wastewater treatment plants, has been conducted in different cities of the Federal State of North Rhine-Westphalia (Germany) on the same day in April 2020, close to the first peak of the corona crisis. Samples were processed and analysed for a set of SARS-CoV-2-specific genes, as well as pan-genotypic gene sequences also covering other coronavirus types, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, a comprehensive set of chemical reference parameters and bioindicators was analysed to characterize the wastewater quality and composition. Results of the RT-qPCR based gene analysis indicate the presence of SARS-CoV-2 genetic traces in different raw wastewaters. Furthermore, selected samples have been sequenced using Sanger technology to confirm the specificity of the RT-qPCR and the origin of the coronavirus. A comparison of the particle-bound and the dissolved portion of SARS-CoV-2 virus genes shows that quantifications must not neglect the solid-phase reservoir. The infectivity of the raw wastewater has also been assessed by viral outgrowth assay with a potential SARS-CoV-2 host cell line in vitro, which were not infected when exposed to the samples. This first evidence suggests that wastewater might be no major route for transmission to humans. Our findings draw attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Aguas Residuales , Betacoronavirus , COVID-19 , Ciudades , Alemania/epidemiología , Humanos , SARS-CoV-2
13.
Membranes (Basel) ; 10(4)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260137

RESUMEN

Nanofiltration (NF) can enable P recovery from waste streams via retaining multivalent impurities from spent pickling acid. However, with the currently available membranes, an economically feasible process is impossible. Layer-by-layer modified NF membranes are a promising solution for the recovery of P from acidic leachate. LbL membranes show a high level of versatility in terms of fine tuning for ion retention, which is necessary to achieve sufficient phosphorus yields. However, the stability of layer-by-layer modified membranes during phosphoric acid (H3PO4) filtration needs to be further investigated. In our study, we show that a polyethersulfone hollow fiber membrane modified with four or eight bi-layers was stable during immersing and filtering of a 15% H3PO4 solution. A sulfonated polyethersulfone (sPES)-based hollow fiber LbL membrane was only stable during filtration. Thus, we show the importance of applying real process conditions to evaluate membranes. Another important aspect is the influence of the high ionic strength of the feed solution on the membrane. We show that a high ionic strength led to a decrease in Mg retention, which could be increased to 85% by adjusting the process parameters.

14.
Water Res ; 170: 115338, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841769

RESUMEN

Decentralized drinking water purification complements water supply in areas with unreliable or absent infrastructure. The exacerbating consequences of climate change in form of droughts and floods force remote households to tap various water sources. Hence, household-based processes must be versatile to cope with e.g. contaminated ground water and turbid surface waters. Purification at household level must be self-sustaining in order to enable independence from continuous supply of power and consumables. In this study, we design a process accordingly and we prove its technical feasibility on pilot scale. The two-step process utilizes gravity-driven ultrafiltration and activated carbon adsorption to purify water, whereas the process regeneration is accomplished by combining Temperature Enhanced Backwash and Temperature Swing Adsorption to clean the membrane and adsorber, respectively. We obtained stable operation over >40 days with a sustained flowrate of ∼5 Lh-1 and consistent product quality (turbidity ≤0.2 NTU) for all relevant water matrices: synthetic ground water, river water and even secondary effluent. We achieved a high removal of the spiked model micropollutant amitrole, environmental endocrine disruptors and bulk dissolved organics of ∼93%, >65% and ∼69%, respectively, at the optimal water recovery for river water of ∼80%. In-situ regeneration promises long-term, self-sufficient operation without exhaustion.


Asunto(s)
Agua Potable , Purificación del Agua , Adsorción , Carbón Orgánico , Ultrafiltración , Abastecimiento de Agua
15.
J Environ Manage ; 236: 396-412, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739045

RESUMEN

The quest for improved living conditions in rapidly growing Indian communities puts pressure on natural resources and produces emissions which harm the environment, society and the economy. Current municipal solid waste (MSW) practices are an important example, as most waste remains untreated and is often deposited on unsafe dumpsites or burned on open fires. Anaerobic digestion (AD) is an option to treat the large biodegradable fraction ('biowaste'). In rural parts of India, the technology to supply energy from biogas has been promoted for 30 years. Biowaste treatment in urban MSW management and organic fertilizer ('digestate') production for agriculture via AD have more recently gained attention but with limited success so far. Recent environmental policies in waste, energy, agricultural and other sectors have, however, set important cornerstones for a broader diffusion in the coming years. On the basis of peer-reviewed literature and governmental reports, we identify barriers and enabling factors along the AD chain (biowaste to technology to product utilization), and analyse relevant boundary conditions for the new multi-sector policies. We show that AD implementation has repeatedly failed due to unrealistic assumptions on biowaste quantity and quality, underestimation of the complex biowaste supply chain, unsuitable AD designs and overestimation of economic returns from biogas and digestate. Local knowledge and capacities for planning and process control are lacking in many places and resources required for operation and maintenance in the long run have often been ignored. We found that the multi-facetted value propositions of AD - including biowaste treatment, energy and fertilizer products - have only been partially tapped due to the exclusive focus on biogas. The new sector policies provide important enabling factors for change. Decentralized AD plants operating on a few tons biowaste per day from reliable and manageable sources (e.g. fruit and vegetable markets) could be a more promising step forward than large-scale investments which rely on large biowaste volumes from various sources. The parallel development of biowaste management, planning tools for municipalities, standardized digestate monitoring protocols and studies on simple, low-cost optimization measures for methane recovery from a wide range of biowastes and innovative high-solid AD digester designs will be prerequisites for the long-term future of AD projects.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Agricultura , Anaerobiosis , Ciudades , India
17.
Bioresour Technol ; 254: 224-230, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29413926

RESUMEN

Anaerobic digestion (AD) of biowaste can generate biogas with methane (CH4) as energy source and contribute to sustainable municipal solid waste management in India. Characteristic municipal biowastes sampled seasonally from household, fruit and vegetable market and agricultural waste collection points in villages, towns and cities in Maharashtra were analysed to assess the potential as substrate for AD. The mean biochemical methane potential (BMP, at 37 °C) across seasons and community sizes was between 200-260, 175-240 and 101-286 NLCH4 kgvs-1 for household, market and agricultural biowaste, respectively. CH4 yields were comparable in villages, towns and cities. Seasonal variations in CH4 yields were observed for market and agricultural biowaste with highest values during pre-monsoon season. Results underpin that municipal biowaste is a suitable substrate for AD in India. However, low purity of available biowaste resulted in lower CH4 yields compared to recent studies using source-segregated biowaste.


Asunto(s)
Metano , Eliminación de Residuos , Anaerobiosis , Ciudades , India
18.
Environ Sci Pollut Res Int ; 25(21): 20336-20347, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28424956

RESUMEN

The removal of five selected pesticide compounds in a brackish model groundwater solution was examined using a bench scale direct contact membrane distillation (DCMD) system. It was found that the rejection rate of the pesticides in DCMD is mainly influenced by its properties. Compounds with low hydrophobic characteristics and low vapour pressure showed a high rejection rate (70-99%), whereas compounds with a high vapour pressure or high hydrophobicity (LogD) showed a reduced rejection (30-50%) at a water recovery of 75%. The influence of groundwater feed solution contents such as the presence of organics (humic acid) and inorganic ions (Na+, Ca2+, Mg2+, Cl- and SO42-) as well as feed temperature (40, 55 and 70 °C) on the rejection of the pesticides in DCMD operation was also evaluated. The results showed that the presence of inorganic ions and organics in the feed solution influences the pesticides rejection in DCMD operation to a minor degree. In contrast, reduced rejection of pesticides with high vapour pressure was observed. A rapid small-scale column test (RSSCT) was carried out to study the removal of any remaining substances in the permeate by adsorption onto granular activated carbon (GAC). RSSCT showed promising performance of GAC as a post-treatment option.


Asunto(s)
Destilación/métodos , Agua Subterránea/química , Plaguicidas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Agua/química , Adsorción , Sustancias Húmicas , Interacciones Hidrofóbicas e Hidrofílicas , Iones , Membranas Artificiales , Temperatura , Presión de Vapor
19.
Bioresour Technol ; 229: 180-189, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28113077

RESUMEN

Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL-1 as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL-1 as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed.


Asunto(s)
Industria Farmacéutica , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biocombustibles , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Carbono/metabolismo , Residuos Industriales , Membranas Artificiales , Proyectos Piloto , Solventes/metabolismo , Aguas Residuales/química
20.
Environ Sci Eur ; 28(1): 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27752453

RESUMEN

This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge 'brokering', and-as it was the International Year of Soil-the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...