Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769657

RESUMEN

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

2.
Science ; 381(6657): 515-524, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535729

RESUMEN

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Asunto(s)
Polaridad Celular , Quimiocina CXCL9 , Neoplasias de Cabeza y Cuello , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análisis , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Macrófagos/inmunología , Osteopontina/análisis , Osteopontina/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Polaridad Celular/inmunología
3.
Nat Cancer ; 4(6): 908-924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217652

RESUMEN

The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39+ potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T , Humanos , Multiómica , Neoplasias Encefálicas/secundario , Encéfalo , Inmunoterapia
5.
Sci Transl Med ; 14(661): eaax8933, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070364

RESUMEN

Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Animales , Encéfalo/metabolismo , Neoplasias de la Mama/genética , Conexinas/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Melanoma , Ratones , FN-kappa B/metabolismo , Calidad de Vida , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
6.
Cell Stem Cell ; 29(8): 1213-1228.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931031

RESUMEN

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.


Asunto(s)
Neoplasias Colorrectales , Mucosa Intestinal , Animales , Neoplasias Colorrectales/patología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Células Madre Neoplásicas/patología , Receptores Acoplados a Proteínas G/metabolismo
7.
Nat Genet ; 54(7): 963-975, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35773407

RESUMEN

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).


Asunto(s)
Neoplasias Colorrectales , Neoplasias Glandulares y Epiteliales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células Epiteliales/patología , Humanos , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Neoplasias Glandulares y Epiteliales/genética , Transcriptoma/genética
8.
Cell Death Differ ; 28(12): 3282-3296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34117376

RESUMEN

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Proteína bcl-X/genética , Adenoma/mortalidad , Adenoma/patología , Animales , Apoptosis , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Análisis de Supervivencia
9.
Nat Genet ; 52(6): 594-603, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451460

RESUMEN

Immunotherapy for metastatic colorectal cancer is effective only for mismatch repair-deficient tumors with high microsatellite instability that demonstrate immune infiltration, suggesting that tumor cells can determine their immune microenvironment. To understand this cross-talk, we analyzed the transcriptome of 91,103 unsorted single cells from 23 Korean and 6 Belgian patients. Cancer cells displayed transcriptional features reminiscent of normal differentiation programs, and genetic alterations that apparently fostered immunosuppressive microenvironments directed by regulatory T cells, myofibroblasts and myeloid cells. Intercellular network reconstruction supported the association between cancer cell signatures and specific stromal or immune cell populations. Our collective view of the cellular landscape and intercellular interactions in colorectal cancer provide mechanistic information for the design of efficient immuno-oncology treatment strategies.


Asunto(s)
Linaje de la Célula , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Colorrectales/patología , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Humanos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/patología , Linfocitos T/inmunología , Linfocitos T/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
10.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121975

RESUMEN

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Asunto(s)
Carcinoma , Microbiota , Animales , Carcinoma/metabolismo , Colon/metabolismo , Ratones
12.
EMBO Mol Med ; 12(1): e10681, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31793740

RESUMEN

High T-cell infiltration in colorectal cancer (CRC) correlates with a favorable disease outcome and immunotherapy response. This, however, is only observed in a small subset of CRC patients. A better understanding of the factors influencing tumor T-cell responses in CRC could inspire novel therapeutic approaches to achieve broader immunotherapy responsiveness. Here, we investigated T cell-suppressive properties of different myeloid cell types in an inducible colon tumor mouse model. The most potent inhibitors of T-cell activity were tumor-infiltrating neutrophils. Gene expression analysis and combined in vitro and in vivo tests indicated that T-cell suppression is mediated by neutrophil-secreted metalloproteinase activation of latent TGFß. CRC patient neutrophils similarly suppressed T cells via TGFß in vitro, and public gene expression datasets suggested that T-cell activity is lowest in CRCs with combined neutrophil infiltration and TGFß activation. Thus, the interaction of neutrophils with a TGFß-rich tumor microenvironment may represent a conserved immunosuppressive mechanism in CRC.


Asunto(s)
Neoplasias del Colon , Linfocitos Infiltrantes de Tumor/inmunología , Metaloproteinasas de la Matriz/metabolismo , Neutrófilos , Linfocitos T/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Neoplasias del Colon/inmunología , Humanos , Ratones , Neutrófilos/inmunología , Microambiente Tumoral
13.
J Clin Oncol ; 37(22): 1876-1885, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042420

RESUMEN

PURPOSE: To determine the predictive and prognostic value of the consensus molecular subtypes (CMSs) of colorectal cancer (CRC) that represent a merging of gene expression-based features largely in primary tumors from six independent classification systems and provide a framework for capturing the intrinsic heterogeneity of CRC in patients enrolled in CALGB/SWOG 80405. PATIENTS AND METHODS: CALGB/SWOG 80405 is a phase III trial that compared the addition of bevacizumab or cetuximab to infusional fluorouracil, leucovorin, and oxaliplatin or fluorouracil, leucovorin, and irinotecan as first-line treatment of advanced CRC. We characterized the CMS classification using a novel NanoString gene expression panel on primary CRCs from 581 patients enrolled in this study to assess the prognostic and predictive value of CMSs in these patients. RESULTS: The CMSs are highly prognostic for overall survival (OS; P < .001) and progression-free survival (PFS; P < .001). Furthermore, CMSs were predictive for both OS (P for interaction < .001) and PFS (P for interaction = .0032). In the CMS1 cohort, patients treated with bevacizumab had a significantly longer OS than those treated with cetuximab (P < .001). In the CMS2 cohort, patients treated with cetuximab had a significantly longer OS than patients treated with bevacizumab (P = .0046). CONCLUSION: These findings highlight the possible clinical utility of CMSs and suggests that refinement of the CMS classification may provide a path toward identifying patients with metastatic CRC who are most likely to benefit from specific targeted therapy as part of the initial treatment.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Regulación Neoplásica de la Expresión Génica , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Bevacizumab/administración & dosificación , Cetuximab/administración & dosificación , Supervivencia sin Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Perfilación de la Expresión Génica , Humanos , Irinotecán/administración & dosificación , Estimación de Kaplan-Meier , Leucovorina/administración & dosificación , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Oxaliplatino/administración & dosificación , Valor Predictivo de las Pruebas , Pronóstico , Resultado del Tratamiento
14.
Cell Mol Gastroenterol Hepatol ; 8(2): 269-290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30954552

RESUMEN

BACKGROUND & AIMS: Colorectal cancer is an epigenetically heterogeneous disease, however, the extent and spectrum of the CpG island methylator phenotype (CIMP) is not clear. METHODS: Genome-scale methylation and transcript expression were measured by DNA Methylation and RNA expression microarray in 216 unselected colorectal cancers, and findings were validated using The Cancer Genome Atlas 450K and RNA sequencing data. Mutations in epigenetic regulators were assessed using CIMP-subtyped Cancer Genome Atlas exomes. RESULTS: CIMP-high cancers dichotomized into CIMP-H1 and CIMP-H2 based on methylation profile. KRAS mutation was associated significantly with CIMP-H2 cancers, but not CIMP-H1 cancers. Congruent with increasing methylation, there was a stepwise increase in patient age from 62 years in the CIMP-negative subgroup to 75 years in the CIMP-H1 subgroup (P < .0001). CIMP-H1 predominantly comprised consensus molecular subtype 1 cancers (70%) whereas consensus molecular subtype 3 was over-represented in the CIMP-H2 subgroup (55%). Polycomb Repressive Complex-2 (PRC2)-marked loci were subjected to significant gene body methylation in CIMP cancers (P < 1.6 × 10-78). We identified oncogenes susceptible to gene body methylation and Wnt pathway antagonists resistant to gene body methylation. CIMP cluster-specific mutations were observed in chromatin remodeling genes, such as in the SWItch/Sucrose Non-Fermentable and Chromodomain Helicase DNA-Binding gene families. CONCLUSIONS: There are 5 clinically and molecularly distinct subgroups of colorectal cancer. We show a striking association between CIMP and age, sex, and tumor location, and identify a role for gene body methylation in the progression of serrated neoplasia. These data support our recent findings that CIMP is uncommon in young patients and that BRAF mutant polyps in young patients may have limited potential for malignant progression.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Islas de CpG , Metilación de ADN , Epigenoma , Mutación , Adenocarcinoma/clasificación , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Factores de Edad , Anciano , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Epigenómica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Oncogenes/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de Secuencia de ARN
15.
Gut ; 68(4): 684-692, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29666172

RESUMEN

OBJECTIVE: Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, BRAF, and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. DESIGN: We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. RESULTS: Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not BrafV600E alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. CONCLUSION: We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Organoides/patología , Proteínas Proto-Oncogénicas B-raf/genética , Adenocarcinoma/metabolismo , Alelos , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Islas de CpG/genética , Reparación de la Incompatibilidad de ADN , Análisis Mutacional de ADN , Progresión de la Enfermedad , Epigenómica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Modelos Genéticos , Mutación , Organoides/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/metabolismo
16.
Clin Cancer Res ; 23(1): 104-115, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27354468

RESUMEN

PURPOSE: Mutation of BRAF at the valine 600 residue occurs in approximately 10% of colorectal cancers, a group with particularly poor prognosis. The response of BRAF mutant colorectal cancer to recent targeted strategies such as anti-BRAF or combinations with MEK and EGFR inhibitors remains limited and highly heterogeneous within BRAF V600E cohorts. There is clearly an unmet need in understanding the biology of BRAF V600E colorectal cancers and potential subgroups within this population. EXPERIMENTAL DESIGN: In the biggest yet reported cohort of 218 BRAF V600E with gene expression data, we performed unsupervised clustering using non-negative matrix factorization to identify gene expression-based subgroups and characterized pathway activation. RESULTS: We found strong support for a split into two distinct groups, called BM1 and BM2. These subtypes are independent of MSI status, PI3K mutation, gender, and sidedness. Pathway analyses revealed that BM1 is characterized by KRAS/AKT pathway activation, mTOR/4EBP deregulation, and EMT whereas BM2 displays important deregulation of the cell cycle. Proteomics data validated these observations as BM1 is characterized by high phosphorylation levels of AKT and 4EBP1, and BM2 patients display high CDK1 and low cyclin D1 levels. We provide a global assessment of gene expression motifs that differentiate BRAF V600E subtypes from other colorectal cancers. CONCLUSIONS: We suggest that BRAF mutant patients should not be considered as having a unique biology and provide an in depth characterization of heterogeneous motifs that may be exploited for drug targeting. Clin Cancer Res; 23(1); 104-15. ©2016 AACR.


Asunto(s)
Sustitución de Aminoácidos , Codón , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Expresión Génica , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Biomarcadores de Tumor , Análisis por Conglomerados , Estudios de Cohortes , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Biología Computacional/métodos , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Modelos Biológicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Proteómica/métodos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Flujo de Trabajo
17.
J Natl Cancer Inst ; 106(10)2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25246611

RESUMEN

BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.


Asunto(s)
Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Biomarcadores de Tumor/análisis , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Transcriptoma , Adenocarcinoma/química , Adulto , Anciano , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Neoplasias del Colon/química , Supervivencia sin Enfermedad , Femenino , Fijadores , Formaldehído , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Parafina , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Ensayos Clínicos Controlados Aleatorios como Asunto , Medición de Riesgo , Factores de Riesgo , Análisis de Matrices Tisulares , Insuficiencia del Tratamiento
18.
J Clin Oncol ; 30(14): 1670-7, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-22454413

RESUMEN

PURPOSE: To improve the risk stratification of patients with rhabdomyosarcoma (RMS) through the use of clinical and molecular biologic data. PATIENTS AND METHODS: Two independent data sets of gene-expression profiling for 124 and 101 patients with RMS were used to derive prognostic gene signatures by using a meta-analysis. These and a previously published metagene signature were evaluated by using cross validation analyses. A combined clinical and molecular risk-stratification scheme that incorporated the PAX3/FOXO1 fusion gene status was derived from 287 patients with RMS and evaluated. RESULTS: We showed that our prognostic gene-expression signature and the one previously published performed well with reproducible and significant effects. However, their effect was reduced when cross validated or tested in independent data and did not add new prognostic information over the fusion gene status, which is simpler to assay. Among nonmetastatic patients, patients who were PAX3/FOXO1 positive had a significantly poorer outcome compared with both alveolar-negative and PAX7/FOXO1-positive patients. Furthermore, a new clinicomolecular risk score that incorporated fusion gene status (negative and PAX3/FOXO1 and PAX7/FOXO1 positive), Intergroup Rhabdomyosarcoma Study TNM stage, and age showed a significant increase in performance over the current risk-stratification scheme. CONCLUSION: Gene signatures can improve current stratification of patients with RMS but will require complex assays to be developed and extensive validation before clinical application. A significant majority of their prognostic value was encapsulated by the fusion gene status. A continuous risk score derived from the combination of clinical parameters with the presence or absence of PAX3/FOXO1 represents a robust approach to improving current risk-adapted therapy for RMS.


Asunto(s)
Factores de Transcripción Forkhead/genética , Fusión Génica/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/mortalidad , Adolescente , Biomarcadores de Tumor/genética , Niño , Preescolar , Estudios de Cohortes , Bases de Datos Factuales , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Análisis Multivariante , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Rabdomiosarcoma/terapia , Gestión de Riesgos , Sensibilidad y Especificidad , Análisis de Supervivencia , Translocación Genética , Reino Unido
19.
Ann Hum Genet ; 75(1): 133-45, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21118193

RESUMEN

Well-established examples of genetic epistasis between a pair of loci typically show characteristic patterns of phenotypic distributions in joint genotype tables. However, inferring epistasis given such data is difficult due to the lack of power in commonly used approaches, which decompose the epistatic patterns into main plus interaction effects followed by testing the interaction term. Testing additive-only or all terms may have more power, but they are sensitive to nonepistatic patterns. Alternatively, the epistatic patterns of interest can be enumerated and the best matching one is found by searching through the possibilities. Although this approach requires multiple testing correction over possible patterns, each pattern can be fitted with a regression model with just one degree of freedom and thus the overall power can still be high, if the number of possible patterns is limited. Here we compare the power of the linear decomposition and pattern search methods, by applying them to simulated data generated under several patterns of joint genotype effects with simple biological interpretations. Interaction-only tests are the least powerful; while pattern search approach is the most powerful if the range of possibilities is restricted, but still includes the true pattern.


Asunto(s)
Epistasis Genética , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
20.
BMC Cancer ; 10: 37, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20144231

RESUMEN

BACKGROUND: The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months. METHODS: RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor (eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation (ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a RISK_25 score. RESULTS: Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_5, PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer and in lymph node positive disease. The PRO_10 and PGR_5 scores were independent predictors of DFS in multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index in multivariate Cox proportional hazard analyses. CONCLUSIONS: Scores representing the endocrine responsiveness and proliferation status of breast cancers were developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as independent prognostic factors to estimate disease free survival (DFS) in postmenopausal patients with estrogen receptor positive breast cancer.


Asunto(s)
Perfilación de la Expresión Génica , ARN/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular , Femenino , Formaldehído/química , Humanos , Persona de Mediana Edad , Parafina/química , Posmenopausia , Estudios Prospectivos , Control de Calidad , Receptores de Estrógenos/metabolismo , Análisis de Regresión , Medición de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...