Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Methods ; 19(9): 1126-1136, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36064775

RESUMEN

In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC-STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC-STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Transmisión de Rastreo
3.
ACS Nano ; 16(6): 9608-9619, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35687880

RESUMEN

Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core-shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.

4.
J Struct Biol ; 214(1): 107837, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104612

RESUMEN

Scanning transmission electron microscopy (STEM) is a powerful imaging technique and has been widely used in current material science research. The attempts of applying STEM (annual dark field (ADF)-STEM or annular bright field (ABF)-STEM) into biological research have been going on for decades while applications have still been limited because of the existing bottlenecks in dose efficiency and non-linearity in contrast. Recently, integrated differential phase contrast (iDPC) STEM technique emerged and achieved a linear phase contrast imaging condition, while resolving signals of light elements next to heavy ones even at low electron dose. This enables successful investigation of beam sensitive materials. Here, we investigate iDPC-STEM advantages in biology, in particular, chemically fixed and resin embedded biological tissues. By comparing results to the conventional TEM, we have found that iDPC-STEM not only shows better contrast but also resolves more structural details at molecular level, including conditions of extremely low dose and minimal heavy-atom staining. We also compare iDPC-STEM with ABF-STEM and found that contrast of iDPC-STEM is even further improved, moderately in lower frequency domains while highly with preserving high frequency biological structural details. For thick sample sections, iDPC-STEM is particularly advantageous. It avoids contrast inversion canceling effects, and by adjusting the depth of focus, fully preserves the contrast of structural details along with the sample. In addition, using depth-sectioning, iDPC-STEM enables resolving in-depth structural variation. Our results suggest that iDPC-STEM have the place and advantages within the future biological research.


Asunto(s)
Electrones , Microscopía Electrónica de Transmisión de Rastreo/métodos , Microscopía de Contraste de Fase
5.
Small Methods ; 5(6): e2001287, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34927906

RESUMEN

Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.

6.
Nat Commun ; 11(1): 5068, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033251

RESUMEN

The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril.


Asunto(s)
Colágeno/química , Minerales/química , Orientación Espacial , Huesos/química , Niño , Colágeno/ultraestructura , Cristalización , Durapatita/química , Electrones , Femenino , Humanos , Modelos Moleculares , Tomografía , Difracción de Rayos X
7.
J Nanosci Nanotechnol ; 18(2): 1006-1018, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448526

RESUMEN

Composites of multi-walled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) are attracting the attention of material scientists since more than a decade as potential next-generation optoelectronic materials for their peculiar features, arising from the combination of the intrinsic electrical, thermal and morphological properties of the two components. They are indeed a promising platform for the development of low-cost, portable and environmentally friendly electronic devices such as supercapacitors, sensors and actuators. Here a novel synthetic strategy for their preparation is envisaged, exploiting the possibility to covalently functionalize the external surface of MWCNTs with tailored molecular units, starting from which the growth of the conjugated polymer can be induced oxidatively. The approach demonstrates its value in being able to effectively promote the formation of PEDOT chains in direct contact with the surface of MWCNTs, differently from what results when the monomer is polymerized in the presence of the pristine carbon nanomaterial. In addition, significant differences are found in the physico-chemical properties and electrochemical behavior when MWCNT-PEDOT covalent composites are studied in comparison to a non-covalent analogue, here illustrated in detail. These evidences constitute a starting point for the future development of novel more finely tuned functional materials based on MWCNT-PEDOT composites, featuring the required optoelectronic properties to precisely target the desired application.

8.
Angew Chem Int Ed Engl ; 54(8): 2457-61, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25640026

RESUMEN

Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic-hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm.

9.
J Colloid Interface Sci ; 447: 107-12, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25702867

RESUMEN

Protein interfaces play an essential role in both natural and man-made materials as stabilizers, sensors, catalysts, and selective channels for ions and small molecules. Probing the molecular arrangement within such interfaces is of prime importance to understand the relation between structure and functionality. Here we report on the preparation and characterization of large area suspended crystalline films of class II hydrophobin HFBI. This small, amphiphilic globular protein readily self-assembles at the air-water interface into a 2D hexagonal lattice which can be transferred onto a holey carbon electron microscopy grid yielding large areas of hundreds of square micrometers intact hydrophobin film spun across micron-sized holes. Fourier transform analysis of low-dose electron microscopy images and selected area electron diffraction profiles reveal a unit cell dimension a=5.6±0.1nm, in agreement with reported atomic force microscopy studies on solid substrates and grazing incidence X-ray scattering experiments at the air-water interface. These findings constitute the first step towards the utilization of large-area suspended crystalline hydrophobin films as membranes for ultrapurification and chiral separation or as biological substrates for ultrafast electron diffraction.


Asunto(s)
Proteínas Fúngicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Trichoderma/metabolismo , Cristalografía por Rayos X , Microscopía de Fuerza Atómica
10.
Nano Lett ; 14(4): 2033-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24579985

RESUMEN

Poly(3-hexylthiophene) (P3HT) assemblies in vitrified organic solvents were visualized at nanometer scale resolution by cryo-transmission electron microscopy, low dose electron diffraction, and cryo-tomography revealing a three-dimensional lamellar structure formed by the stacking of the conjugated backbones of P3HT with a distance of 1.7 nm and increased order in the bulk of the nanowire. This combination of techniques reveals local structures in dispersion and the condensed state that play a crucial role in the performance of organic electronic devices.

11.
J Am Chem Soc ; 133(23): 9088-94, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21542646

RESUMEN

Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu(3)N@C(80) (Lu(3)N@C(80)-PCBEH) show an open circuit voltage (V(OC)) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC(61)BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (J(SC)) should be improved to become competitive with the state of the art solar cells. Here, we address factors influencing the J(SC) in blends containing the high voltage absorber Lu(3)N@C(80)-PCBEH in view of both photogeneration but also transport and extraction of charge carriers. We apply optical, charge carrier extraction, morphology, and spin-sensitive techniques. In blends containing Lu(3)N@C(80)-PCBEH, we found 2 times weaker photoluminescence quenching, remainders of interchain excitons, and, most remarkably, triplet excitons formed on the polymer chain, which were absent in the reference P3HT:PC(61)BM blends. We show that electron back transfer to the triplet state along with the lower exciton dissociation yield due to intramolecular charge transfer in Lu(3)N@C(80)-PCBEH are responsible for the reduced photocurrent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...