Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(6): 644-657, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38309955

RESUMEN

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.


Asunto(s)
Infecciones por Coxsackievirus , Citocinas , Modelos Animales de Enfermedad , Metabolismo Energético , Enterovirus Humano B , Glucólisis , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas , Miocitos Cardíacos , Ubiquitinas , Animales , Ubiquitinas/metabolismo , Ubiquitinas/genética , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/genética , Citocinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Miocitos Cardíacos/patología , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/metabolismo , Humanos , Interacciones Huésped-Patógeno , Masculino , Transducción de Señal , Procesamiento Proteico-Postraduccional
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902289

RESUMEN

The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.


Asunto(s)
Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hormonas Tiroideas/metabolismo , Homeostasis , Metabolismo Energético , Metabolismo de los Lípidos/fisiología
3.
J Ovarian Res ; 16(1): 32, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739419

RESUMEN

The development and maturation of ovarian follicles is a complex and highly regulated process, which is essential for successful ovulation. During recent decades, several mouse models provided insights into the regulation of folliculogenesis. In contrast to the commonly used transgenic or knockout mouse models, the Dummerstorf high-fertility mouse line 1 (FL1) is a worldwide unique selection experiment for increased female reproductive performance and extraordinary high fertility. Interactions of cycle-related alterations of parameters of the hypothalamic pituitary gonadal axis and molecular factors in the ovary lead to improved follicular development and therefore increased ovulation rates in FL1 mice. FL1 females almost doubled the number of ovulated oocytes compared to the unselected control mouse line. To gain insights into the cellular mechanisms leading to the high fertility phenotype we used granulosa cells isolated from antral follicles for mRNA sequencing. Based on the results of the transcriptome analysis we additionally measured hormones and growth factors associated with follicular development to complement the picture of how the signaling pathways are regulated. While IGF1 levels are decreased in FL1 mice in estrus, we found no differences in insulin, prolactin and oxytocin levels in FL1 mice compared to the control line. The results of the mRNA sequencing approach revealed that the actions of insulin, prolactin and oxytocin are restricted local to the granulosa cells, since hormonal receptor expression is differentially regulated in FL1 mice. Additionally, numerous genes, which are involved in important gonadotropin, apoptotic and metabolic signaling pathways in granulosa cells, are differentially regulated in granulosa cells of FL1 mice.We showed that an overlap of different signaling pathways reflects the crosstalk between gonadotropin and growth factor signaling pathways, follicular atresia in FL1 mice is decreased due to improved granulosa cell survival and by improving the efficiency of intracellular signaling, glucose metabolism and signal transduction, FL1 mice have several advantages in reproductive performance and therefore increased the ovulation rate. Therefore, this worldwide unique high fertility model can provide new insights into different factors leading to improved follicular development and has the potential to improve our understanding of high fertility.


Asunto(s)
Insulinas , Prolactina , Femenino , Ratones , Animales , Prolactina/metabolismo , Oxitocina/metabolismo , Atresia Folicular/genética , Atresia Folicular/metabolismo , Células de la Granulosa/metabolismo , Gonadotropinas/metabolismo , Fertilidad , Redes y Vías Metabólicas , ARN Mensajero/metabolismo , Insulinas/metabolismo
4.
Mol Metab ; 64: 101563, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944898

RESUMEN

OBJECTIVE: Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS: Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS: While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION: Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.


Asunto(s)
Ayuno , Enfermedades de Transmisión Sexual , Tejido Adiposo Pardo , Envejecimiento , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Consumo de Oxígeno , Estrés Fisiológico
5.
J Mol Endocrinol ; 69(1): 285-298, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35388794

RESUMEN

The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.


Asunto(s)
Fertilidad , Progesterona , Animales , Femenino , Fertilidad/genética , Hormona Folículo Estimulante , Hormona Luteinizante , Ratones , Reproducción/genética
6.
Sci Adv ; 6(11): eaay1109, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195343

RESUMEN

Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.


Asunto(s)
Infecciones por Coxsackievirus/metabolismo , Citocinas/metabolismo , Enterovirus Humano B/metabolismo , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones por Coxsackievirus/genética , Citocinas/genética , Femenino , Gluconeogénesis , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/patología , Hígado/virología , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
7.
Thyroid ; 30(6): 908-923, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32183611

RESUMEN

Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRß-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/sangre , Hígado/metabolismo , Receptores Depuradores/sangre , Glándula Tiroides/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Animales , Biomarcadores/sangre , Macrófagos/metabolismo , Ratones , Proteómica , Enfermedades de la Tiroides/genética , Enfermedades de la Tiroides/metabolismo , Pruebas de Función de la Tiroides , Receptores beta de Hormona Tiroidea/genética , Hormonas Tiroideas/sangre
8.
Exp Gerontol ; 92: 74-81, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28336316

RESUMEN

Soy-food and its isoflavones, genistein (G) and daidzein (D), were reported to exert mild cholesterol-lowering effect, but the underlying mechanism is still unclear. In this research, first we studied age-related alterations in hepatic cholesterol metabolism of acyclic middle-aged (MA) female rats. Then we tested if purified isoflavones may prevent or reverse these changes, and whether putative changes in hepatic thyroid hormone availability may be associated with this effect. Serum and hepatic total cholesterol (TChol), bile acid and cholesterol precursors, as well as serum TSH and T4 concentrations, hepatic deiodinase (Dio) 1 enzyme activity and MCT8 protein expression were determined by comparing data obtained for MA with young adult (YA) intact (IC) females. Effects of subcutaneously administered G or D (35mg/kg) to MA rats were evaluated versus vehicle-treated MA females. MA IC females were characterized by: higher (p<0.05) serum TChol, lower (p<0.05) hepatic TChol and its biosynthetic precursors, lower (p<0.05) hepatic 7α-hydroxycholesterol but elevated (p<0.05) 27- and 24-hydroxycholesterol in comparison to YA IC. Both isoflavone treatments decreased (p<0.05) hepatic 27-hydroxycholesterol, G being more effective than D, without affecting any other parameter of Chol metabolism. Only G elevated hepatic Dio1 activity (p<0.05). In conclusion, age-related hypercholesteremia was associated with lower hepatic Chol synthesis and shift from main neutral (lower 7α-hydroxycholesterol) to alternative acidic pathway (higher 27-hydroxycholesterol) of Chol degradation to bile acid. Both isoflavones lowered hepatic 27-hydroxycholesterol, which may be considered beneficial. Only G treatment increased hepatic Dio1 activity, thus indicating local increase in thyroid hormones, obviously insufficient to induce prominent cholesterol-lowering effect.


Asunto(s)
Envejecimiento , Hidroxicolesteroles/sangre , Isoflavonas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hormonas Tiroideas/sangre , Animales , Peso Corporal/efectos de los fármacos , Femenino , Hidroxicolesteroles/metabolismo , Hígado/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Fitoestrógenos/farmacología , Ratas , Ratas Wistar , Glycine max/química
9.
Endocrinology ; 157(4): 1694-701, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26910310

RESUMEN

Thyroid hormones (THs) are charged and iodinated amino acid derivatives that need to pass the cell membrane facilitated by thyroid hormone transmembrane transporters (THTT) to exert their biological function. The importance of functional THTT is affirmed by the devastating effects of mutations in the human monocarboxylate transporter (MCT) 8, leading to a severe form of psychomotor retardation. Modulation of THTT function by pharmacological or environmental compounds might disturb TH action on a tissue-specific level. Therefore, it is important to identify compounds with relevant environmental exposure and THTT-modulating activity. Based on a nonradioactive TH uptake assay, we performed a screening of 13 chemicals, suspicious for TH receptor interaction, to test their potential effects on THTT in MCT8-overexpressing MDCK1-cells. We identified silymarin, an extract of the milk thistle, to be a potent inhibitor of T3 uptake by MCT8. Because silymarin is a complex mixture of flavonolignan substances, we further tested its individual components and identified silychristin as the most effective one with an IC50 of approximately 100 nM. The measured IC50 value is at least 1 order of magnitude below those of other known THTT inhibitors. This finding was confirmed by T3 uptake in primary murine astrocytes expressing endogenous Mct8 but not in MCT10-overexpressing MDCK1-cells, indicating a remarkable specificity of the inhibitor toward MCT8. Because silymarin is a frequently used adjuvant therapeutic for hepatitis C infection and chronic liver disease, our observations raise questions regarding its safety with respect to unwanted effects on the TH axis.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Silybum marianum/química , Silimarina/farmacología , Hormonas Tiroideas/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Perros , Relación Dosis-Respuesta a Droga , Células de Riñón Canino Madin Darby , Masculino , Proteínas de Transporte de Membrana/genética , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Extractos Vegetales/farmacología , Simportadores , Hormonas Tiroideas/farmacocinética , Triyodotironina/metabolismo , Triyodotironina/farmacocinética
10.
Endocrinology ; 156(7): 2739-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25910050

RESUMEN

Thyroid hormones (TH) are actively taken up into target cells via TH-transmembrane transporters (THTT). Their activity and expression patterns define a layer of endocrine regulation that is poorly understood. Therefore, THTT are potential targets for interfering agents (endocrine disruptors) as well as for pharmacological interventions. Inactivating mutations have been identified as the underlying cause of heritable diseases (monocarboxylate transporter 8-associated Allan-Herndon-Dudley syndrome) and might also define a class of subclinical TH insensitivity. As a basic tool to solve questions regarding THTT substrate specificity, activation or inactivation by compounds and functional changes from mutations, uptake assays with radiolabeled tracers are standard. Due to the need for radioactive isotopes, this technique is limited to screening of labelled substrates and disadvantageous regarding handling, setup, and regulatory issues. To overcome these hurdles, we developed an uptake assay protocol using nonradioactive ligands. In brief, uptake of nonradioactive iodine-containing substrate molecules was monitored via Sandell-Kolthoff reaction. The novel assay was designed to the common microtiter plate layout. As a prove-of-principle, we measured TH uptake by monocarboxylate transporter 8-transfected MDCK1 cells. Titrations with bromosulphthalein as an example for inhibitor screening setups and a side-by-side comparison with the radioactive method prove this assay to be reliable, sensitive, and convenient. Furthermore, the method was applicable on primary murine astrocytes, which enables high-throughput screening studies on in vitro model systems with physiological transporter regulation. Due to its design, it is applicable for high-throughput screening of modulatory compounds, but it is also a safe, inexpensive and an easily accessible method for functional testing of THTT in basic science.


Asunto(s)
Astrocitos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Triyodotironina/metabolismo , Animales , Perros , Técnicas de Sustitución del Gen , Radioisótopos de Yodo/metabolismo , Células de Riñón Canino Madin Darby , Transportadores de Ácidos Monocarboxílicos/metabolismo
11.
Toxicol Appl Pharmacol ; 278(2): 124-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24793811

RESUMEN

We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh ß, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T3-activated genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T4 bound to Tg, determined thyroid T4 levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p<0.05) correlated with immunohistochemical staining results, and together with decreased serum total T4 levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p<0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p<0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats.


Asunto(s)
Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Isoflavonas/toxicidad , Orquiectomía , Proteínas de Soja/toxicidad , Hormonas Tiroideas/metabolismo , Factores de Edad , Animales , Genisteína/toxicidad , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Wistar
12.
Nutrition ; 25(2): 172-81, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18849144

RESUMEN

OBJECTIVE: Adipokines are fat-derived hormones and cytokines with immune-modulating and metabolic properties. Most of them are associated with insulin resistance. The aim of the present investigation was to evaluate circulating levels of adipokines and glucose homeostasis in patients with inflammatory bowel disease (IBD) and to evaluate possible associations with the course and characteristics of the disease. METHODS: Serum leptin, resistin, visfatin, retinol-binding protein-4, adiponectin, glucose, insulin, and inflammatory parameters were analyzed in 93 patients with inactive IBD (49 with Crohn's disease [CD], 44 with ulcerative colitis [UC]), 35 patients with active IBD (18 with CD, 17 with UC), and 37 age- and body mass index-matched healthy controls. Ninety-two patients were followed for 6 mo. RESULTS: Leptin was similar in patients with IBD and controls, whereas resistin and visfatin were increased in patients with active disease but not in those in remission. In active and inactive disease, adiponectin was decreased (P < 0.001) and retinol-binding protein-4 was increased (P < 0.001) compared with controls. About 60% of patients with IBD showed increased levels of insulin, whereas serum glucose remained normal, resulting in increased homeostasis model assessment values in most patients. Hyperinsulinemia was associated with the decrease in adiponectin (r = -0.572, P < 0.001) and proved to be an independent protective factor for 6-mo maintenance of remission (P = 0.016). CONCLUSION: IBD led to largely similar alterations in circulating adipokines and hyperinsulinemia in patients with CD and those with UC. The unexpected protective effect of hyperinsulinemia on relapse rate denotes the role of the metabolic-inflammatory response as a modulator in IBD.


Asunto(s)
Adiponectina/sangre , Colitis Ulcerosa/sangre , Enfermedad de Crohn/sangre , Hiperinsulinismo/prevención & control , Mediadores de Inflamación/sangre , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Colitis Ulcerosa/complicaciones , Enfermedad de Crohn/complicaciones , Femenino , Humanos , Hiperinsulinismo/etiología , Leptina/sangre , Masculino , Persona de Mediana Edad , Nicotinamida Fosforribosiltransferasa/sangre , Resistina/sangre , Proteínas de Unión al Retinol/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...