RESUMEN
Flower and leaf herbivory might cause relevant and negative impacts on plant fitness. While flower removal or damage by florivores produces direct negative effects on plant fitness, folivores affect plant fitness by reducing resource allocation to reproduction. In this study, we examine the effects of both flower and leaf herbivory by leaf-cutting ants on the reproductive success of the shrub species Miconia nervosa (Smith) Triana (Family Melastomataceae) in a fragment of Atlantic Forest in Northeast Brazil. We conducted a randomized block-designed field experiment with nine replicates (blocks), in which three plants per block were assigned to one of the three following treatments: undamaged plants (ant exclusion), leaf-damaged plants (ant exclusion from reproductive organs, but not from leaves), and flower + leaf-damaged plants (no exclusion of ants). We then measured flower production, fruit set, and fruit production. Our results showed that flower + leaf-damaged plants reduced flower production nearly twofold in relation to undamaged plants, while flower set in leaf-damaged plants remained constant. The number of flowers that turned into fruits (i.e., fruit set), however, increased by 15% in flower + leaf-damaged plants, while it slightly decreased in leaf-damaged compared to undamaged plants. Contrastingly, fruit production was similar between all treatments. Taken together, our results suggest a prominent role of ant floral herbivory across different stages of the reproductive cycle in M. nervosa, with no consequences on final fruit production. The tolerance of M. nervosa to leaf-cutting ant herbivory might explain its high abundance in human-modified landscapes where leaf-cutting ants are hyper-abundant.
Asunto(s)
Hormigas , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Herbivoria , Melastomataceae/fisiología , Animales , ReproducciónRESUMEN
Leaf-cutting ants of the genus Atta construct the probably largest nests among ants and are ecosystem engineers because they alter light and nutrient availability at nest sites. Besides creating canopy gaps in the forest, workers remove all vegetation from atop their nest mounds. Here, we examined the extent and spatial distribution of this nest-clearing behavior by transplanting Licania tomentosa seedlings on Atta cephalotes (Linnaeus) nest mounds in the Atlantic forest in northeast Brazil and documented defoliation patterns by the workers. Within 9 days, workers removed around 53% of the total leaf area planted per colony. All colonies showed a synchronized start of defoliation after a rain event in the fifth night after the seedlings had been transplanted. Defoliation increased with time elapsed since transplanting and with the number of entrances surrounding each seedling. In addition, workers started defoliation on the top of the mound. In contrast, the distance to the next entrance and the size of the seedling did not affect the defoliation pattern. Defoliation was not part of the colony foraging activities but was identified as an element of nest maintenance. Possible cues triggering nest-clearing behavior and the potential link between nest-clearing activities and the control of microclimate of ant nests are discussed.
Asunto(s)
Hormigas/fisiología , Comportamiento de Nidificación , Lluvia , Conducta Espacial , Animales , Brasil , Ecosistema , Hojas de la PlantaRESUMEN
Leaf-cutting ants have long been recognized to forage via complex trail systems but the nature and the ecological drivers of the different foraging strategies adopted remain a key topic. Here, we described the spatiotemporal use of belowground foraging galleries by Atta sexdens L. in the Brazilian Atlantic forest, and examined the adaptive advantages of this foraging strategy. Protium heptaphyllum adult trees (DBH > 10 cm), seed/seedling clumps and ant gallery entrances were mapped across two 1-ha plots during two consecutive fruiting seasons (2002 and 2004). We recorded 75 ca. 40 cm deep gallery entrances beneath 26 P. heptaphyllum trees at nest distances ranging from 14 to 57 m. Furthermore, gallery abundance and galleries associated with seed/seedling clumps correlated positively with P. heptaphyllum density. Our results indicate that A. sexdens was able to set a permanent system of underground galleries targeting P. heptaphyllum trees and their seeds on the ground. Such network of galleries was spatially arranged according to both the spatial distribution and abundance of P. heptaphyllum trees in a way that most gallery entrances were disposed beneath or in close periphery of P. heptaphyllum crowns. Our findings suggest that underground trail systems shaped by fruit resources represent a foraging strategy clearly more common than existing literature on the subject would suggest. In addition, it reinforces the notion that the spatiotemporal availability of resources combined with predation risk largely influence trail configurations as well as overall foraging strategies adopted by leaf-cutting ants.
Asunto(s)
Hormigas , Burseraceae , Conducta Alimentaria , Animales , Demografía , Estaciones del AñoRESUMEN
Much of the ecological alteration faced by human-modified Neotropical forests can be assigned to edge effects, including the proliferation of some voracious herbivores such as leaf-cutting ants. However, the underlying mechanisms/impacts of tropical forest edge on herbivores performance and their foraging behaviour (e.g. dietary diversity) have rarely been investigated. The goal of this study was, therefore, to determine whether and how the annual diet (i.e. species richness, diversity and the relative proportion of pioneer versus non-pioneer species of plant materials) of Atta cephalotes colonies differs in the forest edge versus the interior zone of a large remnant of Atlantic forest in northeastern Brazil. Among the key results was a strong habitat effect on dietary diversity (explaining ca. 40-50% of the variation), which, in edge colonies, decreased approximately by one fourth compared to interior colonies (inverse of Simpson's index: 3.7±0.84 versus 4.99±0.95). There was a predominance of leaf fragments collected from pioneer species in the diet in both habitat (86% in edge and 80.4% in interior). Edge colonies collected proportionally more fragments from pioneer species than colonies located in the forest interior. Our results are the first to demonstrate an edge-mediated relaxation of dietary restrictions in leaf-cutting ants. These findings render robust support to previous evidence indicating the reduction of bottom-up forces as a key factor explaining both edge-induced hyper-abundance and increased herbivory of leaf-cutting ants in human-modified Neotropical landscapes.