Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 10(9): e3603, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659569

RESUMEN

Genetically encoded light-up RNA aptamers have been shown to be promising tools for the visualization of RNAs in living cells, helping us to advance our understanding of the broad and complex life of RNA. Although a handful of light-up aptamers spanning the visible wavelength region have been developed, none of them have yet been reported to be compatible with advanced super-resolution techniques, mainly due to poor photophysical properties of their small-molecule fluorogens. Here, we describe a detailed protocol for fluorescence microscopy of mRNA in live bacteria using the recently reported fluorogenic silicon rhodamine binding aptamer (SiRA) featuring excellent photophysical properties. Notably, with SiRA, we demonstrated the first aptamer-based RNA visualization using super-resolution (STED) microscopy. This imaging method can be especially valuable for visualization of RNA in prokaryotes since the size of a bacterium is only a few times greater than the optical resolution of a conventional microscope.

2.
J Am Chem Soc ; 141(18): 7562-7571, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30986047

RESUMEN

Although genetically encoded light-up RNA aptamers have become promising tools for visualizing and tracking RNAs in living cells, aptamer/ligand pairs that emit in the far-red and near-infrared (NIR) regions are still rare. In this work, we developed a light-up RNA aptamer that binds silicon rhodamines (SiRs). SiRs are photostable, NIR-emitting fluorophores that change their open-closed equilibrium between the noncolored spirolactone and the fluorescent zwitterion in response to their environment. This property is responsible for their high cell permeability and fluorogenic behavior. Aptamers binding to SiR were in vitro selected from a combinatorial RNA library. Sequencing, bioinformatic analysis, truncation, and mutational studies revealed a 50-nucleotide minimal aptamer, SiRA, which binds with nanomolar affinity to the target SiR. In addition to silicon rhodamines, SiRA binds structurally related rhodamines and carborhodamines, making it a versatile tool spanning the far-red region of the spectrum. Photophysical characterization showed that SiRA is remarkably resistant to photobleaching and constitutes the brightest far-red light-up aptamer system known to date owing to its favorable features: a fluorescence quantum yield of 0.98 and an extinction coefficient of 86 000 M-1cm-1. Using the SiRA system, we visualized the expression of RNAs in bacteria in no-wash live-cell imaging experiments and also report stimulated emission depletion (STED) super-resolution microscopy images of aptamer-based, fluorescently labeled mRNA in live cells. This work represents, to our knowledge, the first application of the popular SiR dyes and of intramolecular spirocyclization as a means of background reduction in the field of aptamer-based RNA imaging. We anticipate a high potential for this novel RNA labeling tool to address biological questions.


Asunto(s)
Aptámeros de Nucleótidos/química , Escherichia coli/citología , Colorantes Fluorescentes/química , ARN/análisis , Rodaminas/química , Silicio/química , Aptámeros de Nucleótidos/genética , Rayos Infrarrojos , Ligandos , Estructura Molecular , Imagen Óptica
3.
J Am Chem Soc ; 137(48): 15169-75, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26512733

RESUMEN

Tracking of Pt(II) complexes is of crucial importance toward understanding Pt interactions with cellular biomolecules. Post-treatment fluorescent labeling of functionalized Pt(II)-based agents using the bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has recently been reported as a promising approach. Here we describe an azide-functionalized Pt(II) complex, cis-[Pt(2-azidobutyl)amido-1,3-propanediamine)Cl2] (1), containing the cis geometry and difunctional reactivity of cisplatin, and present a comparative study with its previously described alkyne-functionalized congener. Single-crystal X-ray diffraction reveals a dramatic change in the solid-state arrangement with exchange of the alkyne for an azide moiety wherein 1 is dominated by a pseudo-chain of Pt-Pt dimers and antiparallel alignment of the azide substituents, in comparison with a circular arrangement supported by CH/π(C≡C) interactions in the alkyne version. In vitro studies indicate similar DNA binding and click reactivity of both congeners observed by fluorescent labeling. Interestingly, complex 1 shows in vitro enhanced click reactivity in comparison to a previously reported azide-appended Pt(II) complex. Despite their similar behavior in vitro, preliminary in cellulo HeLa studies indicate a superior imaging potential of azide-functionalized 1. Post-treatment fluorescent labeling of 1 observed by confocal fluorescence microscopy shows nuclear and intense nucleolar localization. These results demonstrate the potential of 1 in different cell line localization studies and for future isolation and purification of Pt-bound targets.

4.
Angew Chem Int Ed Engl ; 54(29): 8542-6, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26094883

RESUMEN

Bisylides and methandiides are two unique families of carbon bases that have found a variety of applications in recent years. Metalated ylides (yldiides) are the link between these types of compounds. Yet, only little is known about their properties, reactivities, and particularly their electronic structure. Here, we report the preparation of the metalated ylide [Ph3P-C-SO2Tol](-) (1) with different alkali metal counterions. The compounds have been studied by X-ray diffraction analysis and NMR spectroscopy and the first structures of a sodium and potassium yldiide are presented. The electronic structure of 1 was explored by DFT calculations confirming its relation with other divalent carbon species. Reactivity studies demonstrate the strong nucleophilicity of the yldiide and its capability to act both as a σ- and π-donor.


Asunto(s)
Metales Alcalinos/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Electrones , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA