Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Org Chem ; 89(9): 5927-5940, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38651750

RESUMEN

A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.

2.
Angew Chem Int Ed Engl ; 62(49): e202312829, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37845183

RESUMEN

An enantioselective carbene-catalyzed radical-radical coupling of acyl imidazoles and racemic Hantzsch esters is disclosed. This method involves the coupling of an N-heterocyclic carbene-derived ketyl radical and a secondary sp3 -carbon radical and allows access to chiral α-aryl aliphatic ketones in moderate-to-good yields and enantioselectivities without any competitive epimerization. The utility of this protocol is highlighted by the late-stage functionalization of various pharmaceutical compounds and is further demonstrated by the transformation of the enantioenriched products to biologically relevant molecules. Computational investigations reveal the N-heterocyclic carbene controls the double-facial selectivity of the ketyl radical and the alkyl radicals, respectively.

3.
Org Lett ; 25(30): 5574-5578, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37489808

RESUMEN

The 1,1,1,3,3,3-hexafluoro-2-propanol-assisted allenamide activation enables metal-free regioselective intermolecular interception of amines, constituting a general C-N bond formation process for accessing value-added 1,3-diamines. Exclusive N-chemoselectivity (vs C for anilines) and regioselectivity were achieved for a broad range of substrates. Late-stage modification and further transformations of the 1,3-diamine products showcased the practicability and benefits of this strategy. Experimental mechanistic studies revealed that 1,1,1,3,3,3-hexafluoro-2-propanol mediates the proton transfer for activation of the allenamide. Density functional theory computations revealed the role of NaOAc in the formation of the reactive electrophilic intermediate, which ultimately governs the selective formation of the 1,3-diamine product.

4.
J Am Chem Soc ; 144(50): 22850-22857, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36473196

RESUMEN

An approach for the copper-catalyzed synthesis of enantioenriched amides bearing an α-stereogenic center is disclosed. This method involves the addition of an allyl copper species to an isocyanate and allows access to α-substituted chiral amides in high yields and high-to-excellent enantioselectivities. The utility of α-vinyl ß-boryl amides in synthesis is highlighted by the diversification of products to afford highly useful scaffolds. DFT calculations reveal that the catalyst preferentially coordinates to the oxygen of the isocyanate. Enantiocontrol arises from the steric repulsion between the boryl group and the stereodirecting phenyl of the chiral ligand.


Asunto(s)
Amidas , Cobre , Estereoisomerismo , Estructura Molecular , Catálisis , Acrilamida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...