Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 14(1): 50-3, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22176578

RESUMEN

The synthesis, characteristics, and biological applications of a series of new rhodamine nitroxide fluorescent probes that enable imaging of hydroxyl radicals (•OH) in living cells are described. These probes are highly selective for •OH in aqueous solution, avoiding interference from other reactive oxygen species (ROS), and they facilitate •OH imaging in biologically active samples. The robust nature of these probes (high specificity and selectivity, and facile synthesis) offer distinct advantages over previous methods for •OH detection.


Asunto(s)
Colorantes Fluorescentes/análisis , Radical Hidroxilo/análisis , Espacio Intracelular/química , Óxidos de Nitrógeno/análisis , Rodaminas/química , Línea Celular , Supervivencia Celular , Colorantes Fluorescentes/síntesis química , Humanos , Radical Hidroxilo/química , Estructura Molecular , Óxidos de Nitrógeno/química , Estrés Oxidativo
2.
Tissue Eng Part C Methods ; 16(2): 167-72, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19409034

RESUMEN

Measuring outgrowth of neuronal explants is critical in evaluating the ability of a biomaterial to act as a permissive substrate for neuronal adhesion and growth. Previous methods lack the ability to quantify robust outgrowth, or lack the capacity to quantify growth on opaque substrates because they exploit the transparent nature of culture dishes to segregate neuronal processes from an image background based on color intensity. In this study, we sought to investigate the ability of opaque silica sol-gel materials to facilitate axonal outgrowth; therefore, a method was developed for quantifying outgrowth of neurites from dorsal root ganglion explants on these unique surfaces. Dorsal root ganglia were isolated from stage-nine chick embryos and cultured for 48 h on sol-gel materials presenting agarose and chitosan polysaccharides individually or in combination. Explants were then imaged, and basic image analysis software was used by three independent observers to obtain axonal length and axonal area measurements. Robust axon length and axonal spread measurements for ganglia cultured on agarose-chitosan sol-gel matrices yield an estimate of strong neural compatibility for these substrates over silica matrices presenting no polysaccharides, or silica matrices presenting chitosan or agarose individually. We suggest that this simple protocol for quantifying material biocompatibility offers an analysis strategy that can be used universally to the same end.


Asunto(s)
Axones/fisiología , Materiales Biocompatibles/farmacología , Neuronas/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Recuento de Células , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Quitosano/química , Quitosano/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/embriología , Ganglios Espinales/fisiología , Ensayo de Materiales/métodos , Regeneración Nerviosa/fisiología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/fisiología , Sefarosa/química , Sefarosa/farmacología , Factores de Tiempo , Andamios del Tejido/química
3.
J Neural Eng ; 5(2): 221-31, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18503105

RESUMEN

Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 degrees C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 degrees C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 degrees C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.


Asunto(s)
Materiales Biocompatibles/química , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Regeneración Tisular Dirigida/métodos , Hidrogeles/química , Metilcelulosa/química , Regeneración Nerviosa/fisiología , Sefarosa/química , Animales , Células Cultivadas , Embrión de Pollo , Regeneración Tisular Dirigida/instrumentación , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA