Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696257

RESUMEN

We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.

2.
Curr Protoc ; 3(9): e879, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37707422

RESUMEN

Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited or acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcomes of infected individuals. This article describes reproducible density-gradient-centrifugation-based as well as positive and negative immunomagnetic selection protocols that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver, or the spleen. Mouse neutrophils isolated by these protocols can be used to examine several aspects of cellular function ex vivo, including pathogen binding, phagocytosis, and killing, neutrophil chemotaxis, oxidative burst, degranulation, and cytokine production, and for performing neutrophil adoptive transfer experiments. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. Basic Protocol 1: Isolation of Neutrophils from Mouse Bone Marrow Using Positive Immunomagnetic Separation Alternate Protocol 1: Purification of Neutrophils from Bone Marrow Using Negative Immunomagnetic Separation Alternate Protocol 2: Purification of Neutrophils from Bone Marrow Using Histopaque-Based Density Gradient Centrifugation Basic Protocol 2: Isolation of Neutrophils from Mouse Tissues Using Positive Immunomagnetic Separation Alternate Protocol 3: Isolation of Neutrophils from Mouse Tissues Using FACS.


Asunto(s)
Neutrófilos , Fagocitosis , Animales , Ratones , Humanos , Traslado Adoptivo , Citometría de Flujo , Empleados de Gobierno
3.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087348

RESUMEN

The extracellular matrix (ECM), a major component of the tumor microenvironment, promotes local invasion to drive metastasis. Here, we describe a method to study whole-tissue ECM effects from disease states associated with metastasis on tumor cell phenotypes and identify the individual ECM proteins and signaling pathways that are driving these effects. We show that decellularized ECM from tumor-bearing and obese mammary glands drives TNBC cell invasion. Proteomics of the ECM from the obese mammary gland led us to identify full-length collagen VI as a novel driver of TNBC cell invasion whose abundance in tumor stroma increases with body mass index in human TNBC patients. Last, we describe the mechanism by which collagen VI contributes to TNBC cell invasion via NG2-EGFR cross-talk and MAPK signaling. Overall, these studies demonstrate the value of decellularized ECM scaffolds obtained from tissues to identify novel functions of the ECM.


Asunto(s)
Colágeno Tipo VI , Matriz Extracelular Descelularizada , Obesidad , Neoplasias de la Mama Triple Negativas , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Humanos , Invasividad Neoplásica , Obesidad/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...