Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 287(12): 9579-90, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22298771

RESUMEN

Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.


Asunto(s)
Espacio Extracelular/enzimología , Heparitina Sulfato/metabolismo , Proteínas/metabolismo , Sulfotransferasas/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Espacio Extracelular/genética , Heparitina Sulfato/química , Riñón/enzimología , Riñón/metabolismo , Pulmón/enzimología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Especificidad de Órganos , Proteínas/genética , Sulfotransferasas/genética
2.
J Am Soc Nephrol ; 18(12): 3119-27, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18003778

RESUMEN

Heparan sulfate (HS) within the glomerular basement membrane (GBM) is thought to play a major role in the charge-selective properties of the glomerular capillary wall. Recent data, however, raise questions regarding the direct role of HS in glomerular filtration. For example, in situ studies suggest that HS may prevent plasma macromolecules from clogging the GBM, keeping it in an "open" state. We evaluated this potential role of HS in vivo by studying the passage of protein through the glomerular capillary wall in the presence and absence of HS. Intravenous administration of neuraminidase removed neuraminic acid--but not HS--from the GBM, and this led to albuminuria. Concomitant removal of HS with heparinase III, confirmed by ultrastructural imaging, prevented the development of albuminuria in response to neuraminidase treatment. Taken together, these results suggest that HS keeps the GBM in an open state, facilitating passage of proteins through the glomerular capillary wall.


Asunto(s)
Membrana Basal/metabolismo , Heparitina Sulfato/metabolismo , Glomérulos Renales/metabolismo , Albuminuria/metabolismo , Animales , Transporte Biológico , Capilares/metabolismo , Glicosaminoglicanos/metabolismo , Microscopía Electrónica , Modelos Biológicos , Ácidos Neuramínicos/metabolismo , Neuraminidasa/metabolismo , Polisacárido Liasas/metabolismo , Proteinuria/metabolismo , Ratas , Ratas Wistar
3.
J Am Soc Nephrol ; 18(3): 823-32, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17251387

RESUMEN

Heparan sulfates (HS) are long, unbranched, negatively charged polysaccharides that are bound to core proteins. HS in the glomerular basement membrane (GBM) is reported to be important for charge-selective permeability. Aberrant GBM HS expression has been observed in several glomerular diseases, such as diabetic nephropathy and membranous glomerulopathy, and a decrease in HS generally is associated with proteinuria. This study, with the use of a controlled in vivo approach, evaluated whether degradation of HS in rat GBM resulted in acute proteinuria. Rats received two intravenous injections of either heparinase III to digest HS or neuraminidase to remove neuraminic acids (positive control). Urine samples were taken at various time points, and at the end of the experiment, kidneys were removed and analyzed. Injection with heparinase III resulted in a complete loss of glomerular HS as demonstrated by immunofluorescence staining using anti-HS antibodies and by electron microscopy using cupromeronic blue in a critical electrolyte concentration mode. In the urine, a strong increase in HS was found within 2 h after the first injection. Staining for agrin, the major HS proteoglycan core protein in the GBM, was unaltered. No urinary albumin or other proteins were detected at any time point, and no changes in glomerular morphology were noticed. Injection of rats with neuraminidase, however, resulted in a major increase of urinary albumin and was associated with an increase in urinary free neuraminic acid. An increased glomerular staining with Peanut agglutinin lectin, indicative of removal of neuraminic acid, was noted. In conclusion, removal of HS from the GBM does not result in acute albuminuria, whereas removal of neuraminic acid does.


Asunto(s)
Membrana Basal Glomerular/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ácidos Neuramínicos/metabolismo , Proteinuria/etiología , Albuminuria/etiología , Albuminuria/metabolismo , Animales , Membrana Basal Glomerular/efectos de los fármacos , Membrana Basal Glomerular/ultraestructura , Heparitina Sulfato/análisis , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Microscopía Electrónica , Neuraminidasa/farmacología , Polisacárido Liasas/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...