Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12859, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896697

RESUMEN

Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management.


Asunto(s)
Bivalvos , Perciformes , Unionidae , Animales , Ecosistema , Peces/genética , Agua Dulce , Especies Introducidas , Conducta Predatoria
2.
Ecol Evol ; 11(9): 4605-4615, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976834

RESUMEN

Cichlids inhabiting the Great Lakes of Africa have radiated extremely rapidly, with Lake Malawi harboring some 850 species. This rapid radiation may be linked to the diversity in behaviors, sexual selection, and phenotypic plasticity. To determine the relationships between morphology and behaviors, microcomputed tomography (microCT) was used to observe internal morphological structures. Observed morphological adaptations were linked with observed behavior of cichlids in Lake Malawi with respect to the various available food resources. Many of these adaptations have parallels, sometimes into the finest details, in other drainage systems and can thus be considered as variations of how cichlids in general respond to environmental opportunities and challenges. Variations in the structure and teeth of the pharyngeal jaws and the oral jaws allowed for fine tuning of specializations, so that various species can utilize the same source without direct competition. We suggested that high-resolution X-ray computed tomography will permit scientists to infer life history and behavior characters of rare or extinct taxa from a detailed examination of morphology and linkages between morphology and behavior found in extant species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...