Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hippocampus ; 34(5): 241-260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415962

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Asunto(s)
Lóbulo Temporal , Humanos , Lóbulo Temporal/patología , Neuroanatomía/métodos , Masculino , Giro Parahipocampal/patología , Giro Parahipocampal/diagnóstico por imagen , Femenino , Anciano , Corteza Entorrinal/patología , Corteza Entorrinal/anatomía & histología , Laboratorios , Anciano de 80 o más Años
3.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37292729

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

4.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050662

RESUMEN

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Ovillos Neurofibrilares/patología , Imagen por Resonancia Magnética , Péptidos beta-Amiloides
5.
Brain ; 147(3): 816-829, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109776

RESUMEN

The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal 1991 article by Braak and Braak. This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Ovillos Neurofibrilares , Amígdala del Cerebelo/diagnóstico por imagen , Lóbulo Temporal , Cognición
6.
Brain Commun ; 5(5): fcad245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767219

RESUMEN

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.

7.
ArXiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090239

RESUMEN

Longitudinal assessment of brain atrophy, particularly in the hippocampus, is a well-studied biomarker for neurodegenerative diseases, such as Alzheimer's disease (AD). In clinical trials, estimation of brain progressive rates can be applied to track therapeutic efficacy of disease modifying treatments. However, most state-of-the-art measurements calculate changes directly by segmentation and/or deformable registration of MRI images, and may misreport head motion or MRI artifacts as neurodegeneration, impacting their accuracy. In our previous study, we developed a deep learning method DeepAtrophy that uses a convolutional neural network to quantify differences between longitudinal MRI scan pairs that are associated with time. DeepAtrophy has high accuracy in inferring temporal information from longitudinal MRI scans, such as temporal order or relative inter-scan interval. DeepAtrophy also provides an overall atrophy score that was shown to perform well as a potential biomarker of disease progression and treatment efficacy. However, DeepAtrophy is not interpretable, and it is unclear what changes in the MRI contribute to progression measurements. In this paper, we propose Regional Deep Atrophy (RDA), which combines the temporal inference approach from DeepAtrophy with a deformable registration neural network and attention mechanism that highlights regions in the MRI image where longitudinal changes are contributing to temporal inference. RDA has similar prediction accuracy as DeepAtrophy, but its additional interpretability makes it more acceptable for use in clinical settings, and may lead to more sensitive biomarkers for disease monitoring in clinical trials of early AD.

8.
Brain ; 146(8): 3192-3205, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082959

RESUMEN

Amyloid-ß (Aß) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe. However, there is evidence that, independently of Aß, age-related tau pathology might be present outside of the medial temporal lobe. We therefore aimed to study age-related Aß-independent tau deposition outside the medial temporal lobe in two large cohorts and to investigate potential downstream effects of this on cognition and structural measures. We included 545 cognitively unimpaired adults (40-92 years) from the BioFINDER-2 study (in vivo) and 639 (64-108 years) from the Rush Alzheimer's Disease Center cohorts (ex vivo). 18F-RO948- and 18F-flutemetamol-PET standardized uptake value ratios were calculated for regional tau and global/regional Aß in vivo. Immunohistochemistry was used to estimate Aß load and tangle density ex vivo. In vivo medial temporal lobe volumes (subiculum, cornu ammonis 1) and cortical thickness (entorhinal cortex, Brodmann area 35) were obtained using Automated Segmentation for Hippocampal Subfields packages. Thickness of early and late neocortical Alzheimer's disease regions was determined using FreeSurfer. Global cognition and episodic memory were estimated to quantify cognitive functioning. In vivo age-related tau deposition was observed in the medial temporal lobe and in frontal and parietal cortical regions, which was statistically significant when adjusting for Aß. This was also observed in individuals with low Aß load. Tau deposition was negatively associated with cortical volumes and thickness in temporal and parietal regions independently of Aß. The associations between age and cortical volume or thickness were partially mediated via tau in regions with early Alzheimer's disease pathology, i.e. early tau and/or Aß pathology (subiculum/Brodmann area 35/precuneus/posterior cingulate). Finally, the associations between age and cognition were partially mediated via tau in Brodmann area 35, even when including Aß-PET as covariate. Results were validated in the ex vivo cohort showing age-related and Aß-independent increases in tau aggregates in and outside the medial temporal lobe. Ex vivo age-cognition associations were mediated by medial and inferior temporal tau tangle density, while correcting for Aß density. Taken together, our study provides support for primary age-related tauopathy even outside the medial temporal lobe in vivo and ex vivo, with downstream effects on structure and cognition. These results have implications for our understanding of the spreading of tau outside the medial temporal lobe, also in the context of Alzheimer's disease. Moreover, this study suggests the potential utility of tau-targeting treatments in primary age-related tauopathy, likely already in preclinical stages in individuals with low Aß pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Tauopatías , Adulto , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Disfunción Cognitiva/patología , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética
9.
Front Neuroanat ; 17: 1149674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034833

RESUMEN

We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor's body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.

10.
Alzheimers Res Ther ; 15(1): 79, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041649

RESUMEN

BACKGROUND: Crucial to the success of clinical trials targeting early Alzheimer's disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. METHODS: Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into ß-amyloid positive/negative (Aß+/Aß-)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aß+/Aß- subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. RESULTS: A total of 245 CN (35.0% Aß+) and 361 MCI (53.2% Aß+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aß+ and Aß- subgroups, including Aß- CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78-0.93] and more modestly in CN (0.65-0.73). CONCLUSIONS: The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aß- CN indicates the potential use of these biomarkers in predicting a normal age-related decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Disfunción Cognitiva/líquido cefalorraquídeo , Atrofia
11.
medRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711782

RESUMEN

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.

12.
Med Image Anal ; 83: 102683, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379194

RESUMEN

Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various anatomical structures in medical images but often suffer from relatively poor generalizability. Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to generalize well to unseen datasets with different characteristics from the training dataset. Several groups have attempted to integrate the power of DCNN to learn complex data representations and the robustness of MAS to changes in image characteristics. However, these studies primarily focused on replacing individual components of MAS with DCNN models and reported marginal improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of two main components with learnable weights, including a weighted voting subnet that mimics the MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-modality, multi-field-strength MRI and Computational Tomography). These experiments show that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets with different characteristics (different MRI field strength or different patient population). DLF is also shown to consistently improve upon conventional MAS methods. In addition, a modality augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be beneficial in improving the segmentation accuracy of learning-based methods, including DLF and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the contribution of each individual modality.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos
13.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464907

RESUMEN

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Imagen por Resonancia Magnética , Proteínas de Unión al ADN
14.
Brain ; 146(4): 1580-1591, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36084009

RESUMEN

Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in tau-PET, cortical thickness and cognitive decline in amyloid-ß-positive individuals with elevated CSF p-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e. cognitively unimpaired or mild cognitive impairment, n = 231) were selected from the BioFINDER-2 study. Amyloid-ß-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF p-tau217 and 18F-RO948 (Tau) PET, yielding groups of tau-concordant-negative (A+P-T-; n = 30), tau-discordant (i.e. A+P+T-; n = 48) and tau-concordant-positive (A+P+T+; n = 18) individuals. In addition, 135 amyloid-ß-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was ∼2 years. Longitudinal increase in tau-PET was faster in the A+P+T- group than in the control and A+P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A+P+T- group showed a slower rate of increase in tau-PET compared to the A+P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A+P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring the effects of interventions with disease-modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest updating the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Amiloide , Cognición , Biomarcadores
15.
J Alzheimers Dis ; 89(2): 641-658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938245

RESUMEN

BACKGROUND: An understudied variant of Alzheimer's disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. OBJECTIVE: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. METHODS: Subjects included 16 bvAD, 67 bvFTD, 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. RESULTS: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. CONCLUSION: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Alzheimer/patología , Adelgazamiento de la Corteza Cerebral , Cognición , Demencia Frontotemporal/complicaciones , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
16.
J Neurosci ; 42(10): 2131-2141, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35086906

RESUMEN

The medial temporal lobe (MTL) is connected to the rest of the brain through two main networks: the anterior-temporal (AT) and the posterior-medial (PM) systems. Given the crucial role of the MTL and networks in the physiopathology of Alzheimer's disease (AD), the present study aimed at (1) investigating whether MTL atrophy propagates specifically within the AT and PM networks, and (2) evaluating the vulnerability of these networks to AD proteinopathies. To do that, we used neuroimaging data acquired in human male and female in three distinct cohorts: (1) resting-state functional MRI (rs-fMRI) from the aging brain cohort (ABC) to define the AT and PM networks (n = 68); (2) longitudinal structural MRI from Alzheimer's disease neuroimaging initiative (ADNI)GO/2 to highlight structural covariance patterns (n = 349); and (3) positron emission tomography (PET) data from ADNI3 to evaluate the networks' vulnerability to amyloid and tau (n = 186). Our results suggest that the atrophy of distinct MTL subregions propagates within the AT and PM networks in a dissociable manner. Brodmann area (BA)35 structurally covaried within the AT network while the parahippocampal cortex (PHC) covaried within the PM network. In addition, these networks are differentially associated with relative tau and amyloid burden, with higher tau levels in AT than in PM and higher amyloid levels in PM than in AT. Our results also suggest differences in the relative burden of tau species. The current results provide further support for the notion that two distinct MTL networks display differential alterations in the context of AD. These findings have important implications for disease spread and the cognitive manifestations of AD.SIGNIFICANCE STATEMENT The current study provides further support for the notion that two distinct medial temporal lobe (MTL) networks, i.e., anterior-temporal (AT) and the posterior-medial (PM), display differential alterations in the context of Alzheimer's disease (AD). Importantly, neurodegeneration appears to occur within these networks in a dissociable manner marked by their covariance patterns. In addition, the AT and PM networks are also differentially associated with relative tau and amyloid burden, and perhaps differences in the relative burden of tau species [e.g., neurofibriliary tangles (NFTs) vs tau in neuritic plaques]. These findings, in the context of a growing literature consistent with the present results, have important implications for disease spread and the cognitive manifestations of AD in light of the differential cognitive processes ascribed to them.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Atrofia/patología , Disfunción Cognitiva/patología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Tomografía de Emisión de Positrones/métodos , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo
17.
Acta Neuropathol Commun ; 9(1): 173, 2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689831

RESUMEN

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.


Asunto(s)
Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Neuroimagen/métodos , Lóbulo Temporal/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Temporal/patología , Proteínas tau
18.
Neuroimage ; 243: 118514, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450261

RESUMEN

Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of disease progression in Alzheimer's disease (AD) and are used in clinical trials to track therapeutic efficacy of disease-modifying treatments. However, longitudinal MRI change measures based on deformable registration can be confounded by MRI artifacts, resulting in over-estimation or underestimation of hippocampal atrophy. For example, the deformation-based-morphometry method ALOHA (Das et al., 2012) finds an increase in hippocampal volume in a substantial proportion of longitudinal scan pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, unexpected, given that the hippocampal gray matter is lost with age and disease progression. We propose an alternative approach to quantify disease progression in the hippocampal region: to train a deep learning network (called DeepAtrophy) to infer temporal information from longitudinal scan pairs. The underlying assumption is that by learning to derive time-related information from scan pairs, the network implicitly learns to detect progressive changes that are related to aging and disease progression. Our network is trained using two categorical loss functions: one that measures the network's ability to correctly order two scans from the same subject, input in arbitrary order; and another that measures the ability to correctly infer the ratio of inter-scan intervals between two pairs of same-subject input scans. When applied to longitudinal MRI scan pairs from subjects unseen during training, DeepAtrophy achieves greater accuracy in scan temporal ordering and interscan interval inference tasks than ALOHA (88.5% vs. 75.5% and 81.1% vs. 75.0%, respectively). A scalar measure of time-related change in a subject level derived from DeepAtrophy is then examined as a biomarker of disease progression in the context of AD clinical trials. We find that this measure performs on par with ALOHA in discriminating groups of individuals at different stages of the AD continuum. Overall, our results suggest that using deep learning to infer temporal information from longitudinal MRI of the hippocampal region has good potential as a biomarker of disease progression, and hints that combining this approach with conventional deformation-based morphometry algorithms may lead to improved biomarkers in the future.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Anciano , Anciano de 80 o más Años , Algoritmos , Atrofia , Biomarcadores , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Neuroimagen/métodos
19.
Brain Behav ; 11(8): e02134, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255437

RESUMEN

INTRODUCTION: Drug-resistant epilepsy patients show worse outcomes after resection when standard neuroimaging is nonlesional, which occurs in one-third of patients. In prior work, we employed 2-D glutamate imaging, Glutamate Chemical Exchange Saturation Transfer (GluCEST), to lateralize seizure onset in nonlesional temporal lobe epilepsy (TLE) based on increased ipsilateral GluCEST signal in the total hippocampus and hippocampal head. We present a significant advancement to single-slice GluCEST imaging, allowing for three-dimensional analysis of brain glutamate networks. METHODS: The study population consisted of four MRI-negative, nonlesional TLE patients (two male, two female) with electrographically identified left temporal onset seizures. Imaging was conducted on a Siemens 7T MRI scanner using the CEST method for glutamate, while the advanced normalization tools (ANTs) pipeline and the Automated Segmentation of the Hippocampal Subfields (ASHS) method were employed for image analysis. RESULTS: Volumetric GluCEST imaging was validated in four nonlesional TLE patients showing increased glutamate lateralized to the hippocampus of seizure onset (p = .048, with a difference among ipsilateral to contralateral GluCEST signal percentage ranging from -0.05 to 1.37), as well as increased GluCEST signal in the ipsilateral subiculum (p = .034, with a difference among ipsilateral to contralateral GluCEST signal ranging from 0.13 to 1.57). CONCLUSIONS: The ability of 3-D, volumetric GluCEST to localize seizure onset down to the hippocampal subfield in nonlesional TLE is an improvement upon our previous 2-D, single-slice GluCEST method. Eventually, we hope to expand volumetric GluCEST to whole-brain glutamate imaging, thus enabling noninvasive analysis of glutamate networks in epilepsy and potentially leading to improved clinical outcomes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ácido Glutámico , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Neuroimagen
20.
Brain ; 144(9): 2784-2797, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34259858

RESUMEN

Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...