Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048452

RESUMEN

Peste des petits ruminants (PPR) is a burdensome viral disease primarily affecting small ruminants, which is currently targeted for eradication by 2030 through the implementation of a Global Control and Eradication Strategy (PPR GCES). The PPR GCES, launched in 2015, has strongly encouraged countries to participate in Regional PPR Roadmaps, designated according to the Food and Agricultural Organization of the United Nations (FAO) and World Organisation for Animal Health (WOAH) regions and epidemiological considerations, with each targeted by dedicated meetings and activities. Following the conclusion of the first phase of the PPR Global Eradication Program (PPR GEP) (2017-2021), the present work focuses on the disease situation and status of the eradication campaign in the fourteen countries of the PPR GCES Middle Eastern Roadmap as well as Egypt. PPR is endemic to or suspected to be present in most of the region, except for Bahrain, which, as of 2021, is preparing to apply for official recognition as being free of PPR. Some substantial shortcomings are observed in surveillance and disease reporting, as well as in the implemented control strategies, most notably vaccination. Since many of these limitations are shared by many of the investigated countries, the international cooperation and harmonization of control efforts appears crucial to making PPR eradication attainable in the Middle East.

2.
Sci Data ; 9(1): 15, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058460

RESUMEN

Here we provide an update to global gridded annual and monthly crop datasets. This new dataset uses the crop categories established by the Global Agro-Ecological Zones (GAEZ) Version 3 model, which is based on the Food and Agricultural Organization of the United Nations (FAO) crop production data. We used publicly available data from the FAOSTAT database as well as GAEZ Version 4 global gridded dataset to generate circa 2015 annual crop harvested area, production, and yields by crop production system (irrigated and rainfed) for 26 crops and crop categories globally at 5-minute resolution. We additionally used available data on crop rotations, cropping intensity, and planting and harvest dates to generate monthly gridded cropland data for physical areas for the 26 crops by production system. These data are in standard georeferenced gridded format, and can be used by any global hydrology, land surface, or other earth system model that requires gridded annual or monthly crop data inputs.

3.
Glob Food Sec ; 26: 100399, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33052301

RESUMEN

Population growth, rising income and urbanization have fueled a significant increase in demand for animal products in developing countries since the early 1970s. The phenomenon, dubbed as the Livestock Revolution, is anticipated to slow down in the coming decades, except in Africa where the Revolution is expected to continue and urbanize. This paper examines the urbanization of the Livestock Revolution in Africa. It estimates that in 2050 almost 70% of total meat and milk consumption will likely come from cities, with urban dwellers demanding, compared to today, 28 and 47 additional million metric tons of meat and milk, respectively. The consequent transformations of the livestock value chain serving urban and peri-urban areas may pose unprecedented public health and environmental challenges to policy-makers.

4.
Sci Total Environ ; 511: 161-75, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25544335

RESUMEN

In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand.

5.
Proc Natl Acad Sci U S A ; 111(9): 3262-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344266

RESUMEN

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Hidrodinámica , Modelos Teóricos , Simulación por Computador , Predicción , Geografía , Incertidumbre
6.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
7.
Proc Natl Acad Sci U S A ; 111(9): 3251-6, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344275

RESUMEN

Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.


Asunto(s)
Riego Agrícola/estadística & datos numéricos , Cambio Climático , Actividades Humanas/estadística & datos numéricos , Modelos Teóricos , Ciclo Hidrológico , Abastecimiento de Agua/estadística & datos numéricos , Simulación por Computador , Predicción , Humanos
8.
Proc Natl Acad Sci U S A ; 111(9): 3239-44, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344283

RESUMEN

We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Asunto(s)
Riego Agrícola/métodos , Agricultura/métodos , Cambio Climático , Modelos Teóricos , Abastecimiento de Agua/estadística & datos numéricos , Riego Agrícola/economía , Agricultura/economía , Dióxido de Carbono/análisis , Simulación por Computador , Predicción
9.
Proc Natl Acad Sci U S A ; 111(9): 3257-61, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344290

RESUMEN

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.


Asunto(s)
Cambio Climático , Inundaciones/estadística & datos numéricos , Hidrodinámica , Modelos Teóricos , Ríos , Simulación por Computador , Predicción
10.
Proc Natl Acad Sci U S A ; 111(9): 3245-50, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344289

RESUMEN

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Modelos Teóricos , Crecimiento Demográfico , Abastecimiento de Agua/estadística & datos numéricos , Predicción , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...