Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 71(3): 682-703, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36401581

RESUMEN

Astrocytes exhibit regional heterogeneity in morphology, function and molecular composition to support and modulate neuronal function and signaling in a region-specific manner. To characterize regional heterogeneity of astrocytic proteomes of different brain regions we established an inducible Aldh1l1-methionyl-tRNA-synthetaseL274G (MetRSL274G ) mouse line that allows astrocyte-specific metabolic labeling of newly synthesized proteins by azidonorleucine (ANL) in vivo and subsequent isolation of tagged proteins by click chemistry. We analyzed astrocytic proteins from four different brain regions by mass spectrometry. The induced expression of MetRSL274G is restricted to astrocytes and identified proteins show a high overlap with proteins compiled in "AstroProt," a newly established database for astrocytic proteins. Gene enrichment analysis reveals a high similarity among brain regions with subtle differences in enriched biological processes and in abundances of key astrocytic proteins for hippocampus, cortex and striatum. However, the cerebellar proteome stands out with proteins being highly associated with the calcium signaling pathway or with bipolar disorder. Subregional analysis of single astrocyte TAMRA intensities in hippocampal layers indicates distinct subregional heterogeneity of astrocytes and highlights the applicability of our toolbox to study differences of astrocytic proteomes in vivo.


Asunto(s)
Astrocitos , Metionina-ARNt Ligasa , Ratones , Animales , Astrocitos/metabolismo , Proteoma/genética , Proteómica/métodos , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Hipocampo/metabolismo
2.
PLoS Genet ; 17(6): e1009585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061833

RESUMEN

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteogenómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Simulación por Computador , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Péptido Hidrolasas/metabolismo , Filogenia , Staphylococcus aureus/genética
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806079

RESUMEN

We focus on the stalked goose barnacle L. anatifera adhesive system, an opportunistic less selective species for the substrate, found attached to a variety of floating objects at seas. Adhesion is an adaptative character in barnacles, ensuring adequate positioning in the habitat for feeding and reproduction. The protein composition of the cement multicomplex and adhesive gland was quantitatively studied using shotgun proteomic analysis. Overall, 11,795 peptide sequences were identified in the gland and 2206 in the cement, clustered in 1689 and 217 proteinGroups, respectively. Cement specific adhesive proteins (CPs), proteases, protease inhibitors, cuticular and structural proteins, chemical cues, and many unannotated proteins were found, among others. In the cement, CPs were the most abundant (80.5%), being the bulk proteins CP100k and -52k the most expressed of all, and CP43k-like the most expressed interfacial protein. Unannotated proteins comprised 4.7% of the cement proteome, ranking several of them among the most highly expressed. Eight of these proteins showed similar physicochemical properties and amino acid composition to known CPs and classified through Principal Components Analysis (PCA) as new CPs. The importance of PCA on the identification of unannotated non-conserved adhesive proteins, whose selective pressure is on their relative amino acid abundance, was demonstrated.


Asunto(s)
Adhesivos , Péptidos/metabolismo , Proteogenómica , Proteoma , Thoracica/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Análisis por Conglomerados , Ecosistema , Peso Molecular , Análisis de Componente Principal , Proteómica/métodos
4.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260514

RESUMEN

Adhesive secretion has a fundamental role in barnacles' survival, keeping them in an adequate position on the substrate under a variety of hydrologic regimes. It arouses special interest for industrial applications, such as antifouling strategies, underwater industrial and surgical glues, and dental composites. This study was focused on the goose barnacle Pollicipes pollicipes adhesion system, a species that lives in the Eastern Atlantic strongly exposed intertidal rocky shores and cliffs. The protein composition of P. pollicipes cement multicomplex and cement gland was quantitatively studied using a label-free LC-MS high-throughput proteomic analysis, searched against a custom transcriptome-derived database. Overall, 11,755 peptide sequences were identified in the gland while 2880 peptide sequences were detected in the cement, clustered in 1616 and 1568 protein groups, respectively. The gland proteome was dominated by proteins of the muscle, cytoskeleton, and some uncharacterized proteins, while the cement was, for the first time, reported to be composed by nearly 50% of proteins that are not canonical cement proteins, mainly unannotated proteins, chemical cues, and protease inhibitors, among others. Bulk adhesive proteins accounted for one-third of the cement proteome, with CP52k being the most abundant. Some unannotated proteins highly expressed in the proteomes, as well as at the transcriptomic level, showed similar physicochemical properties to the known surface-coupling barnacle adhesive proteins while the function of the others remains to be discovered. New quantitative and qualitative clues are provided to understand the diversity and function of proteins in the cement of stalked barnacles, contributing to the whole adhesion model in Cirripedia.


Asunto(s)
Proteoma/metabolismo , Thoracica/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Glándulas Exocrinas/metabolismo , Proteoma/genética , Thoracica/genética
5.
Chem Sci ; 10(20): 5197-5210, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31191875

RESUMEN

The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.

6.
Front Pharmacol ; 10: 340, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024308

RESUMEN

The Gram-positive pathogen Clostridioides difficile is the main bacterial agent of nosocomial antibiotic associated diarrhea. Bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) are well established modulators of virulence that influence the outcome of human pathologies during infections. Here, we present the first interactomic network of the sole cyclophilin-type PPIase of C. difficile (CdPpiB) and show that it has diverse interaction partners including major enzymes of the amino acid-dependent energy (LdhA, EtfAB, Had, Acd) and the glucose-derived (Fba, GapA, Pfo, Pyk, Pyc) central metabolism. Proteins of the general (UspA), oxidative (Rbr1,2,3, Dsr), alkaline (YloU, YphY) and cold shock (CspB) response were found bound to CdPpiB. The transcriptional (Lrp), translational (InfC, RFF) and folding (GroS, DnaK) control proteins were also found attached. For a crucial enzyme of cysteine metabolism, O-acetylserine sulfhydrylase (CysK), the global transcription regulator Lrp and the flagellar subunit FliC, these interactions were independently confirmed using a bacterial two hybrid system. The active site residues F50, F109, and F110 of CdPpiB were shown to be important for the interaction with the residue P87 of Lrp. CysK activity after heat denaturation was restored by interaction with CdPpiB. In accordance, tolerance toward cell wall stress caused by the exposure to amoxicillin was reduced. In the absence of CdPpiB, C. difficile was more susceptible toward L-cysteine. At the same time, the cysteine-mediated suppression of toxin production ceased resulting in higher cytotoxicity. In summary, the cyclophilin-type PPIase of C. difficile (CdPpiB) coordinates major cellular processes via its interaction with major regulators of transcription, translation, protein folding, stress response and the central metabolism.

7.
PLoS Pathog ; 14(3): e1006937, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499066

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few oncogenic human viruses known to date. Its large genome encodes more than 85 proteins and includes both unique viral proteins as well as proteins conserved amongst herpesviruses. KSHV ORF20 is a member of the herpesviral core UL24 family, but the function of ORF20 and its role in the viral life cycle is not well understood. ORF20 encodes three largely uncharacterized isoforms, which we found were localized predominantly in the nuclei and nucleoli. Quantitative affinity purification coupled to mass spectrometry (q-AP-MS) identified numerous specific interacting partners of ORF20, including ribosomal proteins and the interferon-stimulated gene product (ISG) oligoadenylate synthetase-like protein (OASL). Both endogenous and transiently transfected OASL co-immunoprecipitated with ORF20, and this interaction was conserved among all ORF20 isoforms and multiple ORF20 homologs of the UL24 family in other herpesviruses. Characterization of OASL interacting partners by q-AP-MS identified a very similar interactome to that of ORF20. Both ORF20 and OASL copurified with 40S and 60S ribosomal subunits, and when they were co-expressed, they associated with polysomes. Although ORF20 did not have a global effect on translation, ORF20 enhanced RIG-I induced expression of endogenous OASL in an IRF3-dependent but IFNAR-independent manner. OASL has been characterized as an ISG with antiviral activity against some viruses, but its role for gammaherpesviruses was unknown. We show that OASL and ORF20 mRNA expression were induced early after reactivation of latently infected HuARLT-rKSHV.219 cells. Intriguingly, we found that OASL enhanced infection of KSHV. During infection with a KSHV ORF20stop mutant, however, OASL-dependent enhancement of infectivity was lost. Our data have characterized the interaction of ORF20 with OASL and suggest ORF20 usurps the function of OASL to benefit KSHV infection.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/patogenicidad , Sistemas de Lectura Abierta/genética , Proteínas Virales/metabolismo , Replicación Viral , 2',5'-Oligoadenilato Sintetasa/genética , Secuencia de Aminoácidos , Células Cultivadas , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Humanos , Interferones/farmacología , Proteínas Ribosómicas , Proteínas Virales/genética
8.
Eur J Immunol ; 47(12): 2043-2058, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833060

RESUMEN

Regulatory T (Treg) cells require T-cell receptor (TCR) signalling to exert their immunosuppressive activity, but the precise organization of the TCR signalling network compared to conventional T (Tconv) cells remains elusive. By using accurate mass spectrometry and multi-epitope ligand cartography (MELC) we characterized TCR signalling and recruitment of TCR signalling components to the immunological synapse (IS) in Treg cells and Tconv cells. With the exception of Themis which we detected in lower amounts in Treg cells, other major TCR signalling components were found equally abundant, however, their phosphorylation-status notably discriminates Treg cells from Tconv cells. Overall, this study identified 121 Treg cell-specific phosphorylations. Short-term triggering of T cell subsets via CD3 and CD28 widely harmonized these variations with the exception of eleven TCR signalling components that mainly regulate cytoskeleton dynamics and molecular transport. Accordingly, conjugation with B cells indeed caused variant cellular morphology and revealed a Treg cell-specific recruitment of TCR signalling components such as PKCθ, PLCγ1 and ZAP70 as well as B cell-derived CD86 into the IS. Together, results from this study support the existence of a Treg cell-specific IS and suggest Treg cell-specific cytoskeleton dynamics as a novel determinant for the unique functional properties of Treg cells.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Femenino , Ratones Endogámicos BALB C , Microscopía Fluorescente , Fosforilación , Proteoma/inmunología , Proteoma/metabolismo , Proteómica/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Proteína Tirosina Quinasa ZAP-70/inmunología , Proteína Tirosina Quinasa ZAP-70/metabolismo
9.
Sci Rep ; 7(1): 4972, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694492

RESUMEN

Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neumonía/inmunología , Proteómica/métodos , Streptococcus pneumoniae/inmunología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/microbiología , Modelos Animales de Enfermedad , Inmunoglobulina A Secretora/genética , Inmunoglobulina A Secretora/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Neumonía/genética , Neumonía/microbiología , Receptores de Inmunoglobulina Polimérica/genética , Receptores de Inmunoglobulina Polimérica/metabolismo , Análisis de Secuencia de ARN
10.
Cell Death Differ ; 24(10): 1739-1749, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28644433

RESUMEN

The blockade of inhibitory receptors such as CTLA-4 (CD152) is being used as immune-checkpoint therapy, offering a powerful strategy to restore effective immune responses against tumors. To determine signal components that are induced under the control of CTLA-4 we analyzed activated murine CD8+ T cells by quantitative proteomics. Accurate mass spectrometry revealed that CTLA-4 engagement led to central changes in the phosphorylation of proteins involved in T-cell differentiation. Beside other targets, we discovered a CTLA-4-mediated induction of the translational inhibitor programmed cell death-4 (PDCD4) as a result of FoxO1 nuclear re-localization. PDCD4 further bound a distinct set of mRNAs including Glutaminase, which points out a critical role for CTLA-4 in CD8+ T-cell metabolism. Consequently, PDCD4-deficient cytotoxic T-lymphocytes (CTLs) expressed increased amounts of otherwise repressed effector molecules and ultimately led to superior control of tumor growth in vivo. These findings reveal a novel CTLA-4-mediated pathway to attenuate CTLs and indicate the importance of post-transcriptional mechanisms in the regulation of anti-tumor immune responses.


Asunto(s)
Antígeno CTLA-4/metabolismo , Citocinas/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/deficiencia , Diferenciación Celular/fisiología , Procesamiento Proteico-Postraduccional/fisiología
11.
J Bacteriol ; 198(9): 1401-13, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26903416

RESUMEN

UNLABELLED: Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO(3-)→ NO(2-)→ NO → N2O → N2 Genetic experiments suggested that the nitric oxide reductase NorBC and the regulatory protein NosR are the nucleus of the denitrification protein network. We utilized membrane interactomics in combination with electron microscopy colocalization studies to elucidate the corresponding protein-protein interactions. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. The periplasmic nitrous oxide reductase NosZ is linked via NosR. The nitrate transporter NarK2, the nitrate regulatory system NarXL, various nitrite reductase maturation proteins, NirEJMNQ, and the Nos assembly lipoproteins NosFL were also found to be attached. A number of proteins associated with energy generation, including electron-donating dehydrogenases, the complete ATP synthase, almost all enzymes of the tricarboxylic acid (TCA) cycle, and the Sec system of protein transport, among many other proteins, were found to interact with the denitrification proteins. This deduced nitrate respirasome is presumably only one part of an extensive cytoplasmic membrane-anchored protein network connecting cytoplasmic, inner membrane, and periplasmic proteins to mediate key activities occurring at the barrier/interface between the cytoplasm and the external environment. IMPORTANCE: The processes of cellular energy generation are catalyzed by large multiprotein enzyme complexes. The molecular basis for the interaction of these complexes is poorly understood. We employed membrane interactomics and electron microscopy to determine the protein-protein interactions involved. The well-investigated enzyme complexes of denitrification of the pathogenic bacterium Pseudomonas aeruginosa served as a model. Denitrification is one essential step of the universal N cycle and provides the bacterium with an effective alternative to oxygen respiration. This process allows the bacterium to form biofilms, which create low-oxygen habitats and which are a key in the infection mechanism. Our results provide new insights into the molecular basis of respiration, as well as opening a new window into the infection strategies of this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desnitrificación , Proteínas de la Membrana/metabolismo , Nitrato-Reductasa/metabolismo , Oxidorreductasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Microscopía Electrónica , Nitrato-Reductasa/genética , Nitratos/metabolismo , Oxidorreductasas/genética , Oxígeno/metabolismo , Periplasma/metabolismo , Mapas de Interacción de Proteínas , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestructura
12.
J Bacteriol ; 197(19): 3066-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26170416

RESUMEN

UNLABELLED: Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCE: Physiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm. Here, we demonstrate the existence of a ternary complex consisting of the denitrifying enzyme NirS, the chaperone DnaK, and the flagellar protein FliC in the periplasm of the pathogenic bacterium P. aeruginosa. The dependence of flagellum formation and motility on the presence of an intact NirS was shown, structurally connecting both cellular processes, which are important for biofilm formation and pathogenicity of the bacterium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Nitrito Reductasas/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Chaperonas Moleculares/genética , Movimiento , Mutación , Nitrito Reductasas/genética , Conformación Proteica , Transporte de Proteínas , Pseudomonas aeruginosa/genética
13.
Fungal Genet Biol ; 80: 10-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25914160

RESUMEN

We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity.


Asunto(s)
Neurospora crassa/genética , Nitrato-Reductasa/genética , Nitrato-Reductasa/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos Monoclonales/química , Escherichia coli , Expresión Génica , Vectores Genéticos , Mutación , Neurospora crassa/metabolismo , Nitrato-Reductasa/química , Fosforilación
14.
J Proteome Res ; 13(11): 5230-9, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24702127

RESUMEN

Hepes-glutamic acid buffer-mediated organic solvent protection effect (HOPE)-fixation has been introduced as an alternative to formalin fixation of clinical samples. Beyond preservation of morphological structures for histology, HOPE-fixation was demonstrated to be compatible with recent methods for RNA and DNA sequencing. However, the suitability of HOPE-fixed materials for the inspection of proteomes by mass spectrometry so far remained undefined. This is of particular interest, since proteins constitute a prime resource for drug research and can give valuable insights into the activity status of signaling pathways. In this study, we extracted proteins from human lung tissue and tested HOPE-treated and snap-frozen tissues comparatively by proteome and phosphoproteome analyses. High confident data from accurate mass spectrometry allowed the identification of 2603 proteins and 3036 phosphorylation sites. HOPE-fixation did not hinder the representative extraction of proteins, and investigating their biochemical properties, covered subcellular localizations, and cellular processes revealed no bias caused by the type of fixation. In conclusion, proteome as well as phosphoproteome data of HOPE lung samples were qualitatively equivalent to results obtained from snap-frozen tissues. Thus, HOPE-treated tissues match clinical demands in both histology and retrospective proteome analyses of patient samples by proteomics.


Asunto(s)
Pulmón/metabolismo , Fosfoproteínas/análisis , Proteoma/análisis , Fijación del Tejido/métodos , Tampones (Química) , Criopreservación , Ácido Glutámico/química , HEPES/química , Humanos , Fosforilación , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem
15.
J Clin Invest ; 123(11): 4755-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24216478

RESUMEN

Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.


Asunto(s)
Reactividad Cruzada , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/inmunología , Metaloendopeptidasas/inmunología , Necrosis/inmunología , Linfocitos T/enzimología , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Línea Celular Tumoral , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Ovalbúmina/inmunología , ARN Interferente Pequeño/genética
16.
Biochem J ; 441(3): 823-32, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004669

RESUMEN

The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys4³°, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys4³°. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys²°6, was identified. Furthermore, the active-site Cys4³° was found to be located on top of a loop structure, formed by the two flanking residues Cys4²8 and Cys4³5, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys4²8 and Cys4³5 are within disulfide bond distance and that a persulfide transfer from Cys4³° to Cys²°6 is indeed possible.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas/química , Cisteína/aislamiento & purificación , Disulfuros/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Sulfuros/metabolismo , Sulfurtransferasas , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Coenzimas/química , Coenzimas/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Cofactores de Molibdeno , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Pteridinas/química , Pteridinas/metabolismo , Homología de Secuencia , Relación Estructura-Actividad , Sulfurtransferasas/química , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
17.
J Microbiol Methods ; 88(2): 229-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22178430

RESUMEN

In many bacteria, high levels of the ubiquitous second messenger c-di-GMP have been demonstrated to suppress motility and to promote the establishment of surface-adherent biofilm communities. While molecular mechanisms underlying the synthesis and degradation of c-di-GMP have been comprehensively characterized, little is known about how c-di-GMP mediates its regulatory effects. In this study, we have established a chemical proteomics approach to identify c-di-GMP interacting proteins in the opportunistic pathogen Pseudomonas aeruginosa. A functionalized c-di-GMP analog, 2'-aminohexylcarbamoyl-c-di-GMP (2'-AHC-c-di-GMP), was chemically synthesized and following its immobilization used to perform affinity pull down experiments. Enriched proteins were subsequently identified by high-resolution mass spectrometry. 2'-AHC-c-di-GMP was also employed in surface plasmon resonance studies to evaluate and quantify the interaction of c-di-GMP with its potential target molecules in vitro. The biochemical tools presented here may serve the identification of novel classes of c-di-GMP effectors and thus contribute to a better characterization and understanding of the complex c-di-GMP signaling network.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Portadoras/análisis , GMP Cíclico/análogos & derivados , Proteómica/métodos , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Pseudomonas aeruginosa/química , Transducción de Señal , Resonancia por Plasmón de Superficie
18.
BMC Res Notes ; 4: 180, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21663678

RESUMEN

BACKGROUND: The luxS gene in Shewanella oneidensis was shown to encode an autoinducer-2 (AI-2)-like molecule, the postulated universal bacterial signal, but the impaired biofilm growth of a luxS deficient mutant could not be restored by AI-2, indicating it might not have a signalling role in this organism. FINDINGS: Here, we provide further evidence regarding the metabolic role of a luxS mutation in S. oneidensis. We constructed a luxS mutant and compared its phenotype to a wild type control with respect to its ability to remove AI-2 from the medium, expression of secreted proteins and biofilm formation. We show that S. oneidensis has a cell-dependent mechanism by which AI-2 is depleted from the medium by uptake or degradation at the end of the exponential growth phase. As AI-2 depletion is equally active in the luxS mutant and thus does not require AI-2 as an inducer, it appears to be an unspecific mechanism suggesting that AI-2 for S. oneidensis is a metabolite which is imported under nutrient limitation. Secreted proteins were studied by iTraq labelling and liquid chromatography mass spectrometry (LC-MS) detection. Differences between wild type and mutant were small. Proteins related to flagellar and twitching motility were slightly up-regulated in the luxS mutant, in accordance with its loose biofilm structure. An enzyme related to cysteine metabolism was also up-regulated, probably compensating for the lack of the LuxS enzyme. The luxS mutant developed an undifferentiated, loosely-connected biofilm which covered the glass surface more homogenously than the wild type control, which formed compact aggregates with large voids in between. CONCLUSIONS: The data confirm the role of the LuxS enzyme for biofilm growth in S. oneidensis and make it unlikely that AI-2 has a signalling role in this organism.

19.
Proc Natl Acad Sci U S A ; 108(16): 6674-9, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464319

RESUMEN

Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Plastidios/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plastidios/genética , Biosíntesis de Proteínas/fisiología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
20.
Microb Cell Fact ; 9: 23, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20406453

RESUMEN

BACKGROUND: The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. RESULTS: The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and glucoamylase (multiple spots) was identified as the most abundant extracellular protein. Surprisingly, the intracellular proteome of A. niger growing on xylose in bioreactor cultures differed more from a culture growing in shake flasks using the same medium than from the bioreactor culture growing on maltose. For example, in shake flask cultures with xylose as carbon source the most abundant intracellular proteins were not the glycolytic and the TCA cycle enzymes and the flavohemoglobin, but CipC, a protein of yet unknown function, superoxide dismutase and an NADPH dependent aldehyde reductase. Moreover, vacuolar proteases accumulated to higher and ER-resident chaperones and foldases to lower levels in shake flask compared to the bioreactor cultures. CONCLUSIONS: The utilization of xylose or maltose was strongly affecting the composition of the secretome but of minor influence on the composition of the intracellular proteome. On the other hand, differences in culture conditions (pH control versus no pH control, aeration versus no aeration and stirring versus shaking) have a profound effect on the intracellular proteome. For example, lower levels of ER-resident chaperones and foldases and higher levels of vacuolar proteases render shake flask conditions less favorable for protein production compared to controlled bioreactor cultures.


Asunto(s)
Aspergillus niger/química , Maltosa/metabolismo , Proteoma/análisis , Xilosa/metabolismo , Aire , Aspergillus niger/metabolismo , Reactores Biológicos , Carbono/metabolismo , Proteínas Fúngicas/análisis , Proteínas Fúngicas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Maltosa/farmacología , Proteoma/efectos de los fármacos , Proteómica/métodos , Xilosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...