Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Psychometrika ; 89(1): 151-171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38446394

RESUMEN

Temporal network data is often encoded as time-stamped interaction events between senders and receivers, such as co-authoring scientific articles or communication via email. A number of relational event frameworks have been proposed to address specific issues raised by complex temporal dependencies. These models attempt to quantify how individual behaviour, endogenous and exogenous factors, as well as interactions with other individuals modify the network dynamics over time. It is often of interest to determine whether changes in the network can be attributed to endogenous mechanisms reflecting natural relational tendencies, such as reciprocity or triadic effects. The propensity to form or receive ties can also, at least partially, be related to actor attributes. Nodal heterogeneity in the network is often modelled by including actor-specific or dyadic covariates. However, comprehensively capturing all personality traits is difficult in practice, if not impossible. A failure to account for heterogeneity may confound the substantive effect of key variables of interest. This work shows that failing to account for node level sender and receiver effects can induce ghost triadic effects. We propose a random-effect extension of the relational event model to deal with these problems. We show that it is often effective over more traditional approaches, such as in-degree and out-degree statistics. These results that the violation of the hierarchy principle due to insufficient information about nodal heterogeneity can be resolved by including random effects in the relational event model as a standard.


Asunto(s)
Relaciones Interpersonales , Humanos , Psicometría , Modelos Estadísticos
2.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37774002

RESUMEN

MOTIVATION: Investigating cell differentiation under a genetic disorder offers the potential for improving current gene therapy strategies. Clonal tracking provides a basis for mathematical modelling of population stem cell dynamics that sustain the blood cell formation, a process known as haematopoiesis. However, many clonal tracking protocols rely on a subset of cell types for the characterization of the stem cell output, and the data generated are subject to measurement errors and noise. RESULTS: We propose a stochastic framework to infer dynamic models of cell differentiation from clonal tracking data. A state-space formulation combines a stochastic quasi-reaction network, describing cell differentiation, with a Gaussian measurement model accounting for data errors and noise. We developed an inference algorithm based on an extended Kalman filter, a nonlinear optimization, and a Rauch-Tung-Striebel smoother. Simulations show that our proposed method outperforms the state-of-the-art and scales to complex structures of cell differentiations in terms of nodes size and network depth. The application of our method to five in vivo gene therapy studies reveals different dynamics of cell differentiation. Our tool can provide statistical support to biologists and clinicians to better understand cell differentiation and haematopoietic reconstitution after a gene therapy treatment. The equations of the state-space model can be modified to infer other dynamics besides cell differentiation. AVAILABILITY AND IMPLEMENTATION: The stochastic framework is implemented in the R package Karen which is available for download at https://cran.r-project.org/package=Karen. The code that supports the findings of this study is openly available at https://github.com/delcore-luca/CellDifferentiationNetworks.


Asunto(s)
Algoritmos , Modelos Teóricos , Diferenciación Celular , Hematopoyesis/genética , Redes Reguladoras de Genes
3.
BMC Bioinformatics ; 24(1): 228, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268887

RESUMEN

BACKGROUND: Mathematical models of haematopoiesis can provide insights on abnormal cell expansions (clonal dominance), and in turn can guide safety monitoring in gene therapy clinical applications. Clonal tracking is a recent high-throughput technology that can be used to quantify cells arising from a single haematopoietic stem cell ancestor after a gene therapy treatment. Thus, clonal tracking data can be used to calibrate the stochastic differential equations describing clonal population dynamics and hierarchical relationships in vivo. RESULTS: In this work we propose a random-effects stochastic framework that allows to investigate the presence of events of clonal dominance from high-dimensional clonal tracking data. Our framework is based on the combination between stochastic reaction networks and mixed-effects generalized linear models. Starting from the Kramers-Moyal approximated Master equation, the dynamics of cells duplication, death and differentiation at clonal level, can be described by a local linear approximation. The parameters of this formulation, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones and are not sufficient to describe situation in which clones exhibit heterogeneity in their fitness that can lead to clonal dominance. In order to overcome this limitation, we extend the base model by introducing random-effects for the clonal parameters. This extended formulation is calibrated to the clonal data using a tailor-made expectation-maximization algorithm. We also provide the companion  package RestoreNet, publicly available for download at https://cran.r-project.org/package=RestoreNet . CONCLUSIONS: Simulation studies show that our proposed method outperforms the state-of-the-art. The application of our method in two in-vivo studies unveils the dynamics of clonal dominance. Our tool can provide statistical support to biologists in gene therapy safety analyses.


Asunto(s)
Algoritmos , Modelos Teóricos , Funciones de Verosimilitud , Simulación por Computador , Células Clonales , Procesos Estocásticos
4.
PLoS One ; 18(3): e0283247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36940211

RESUMEN

The citation network of patents citing prior art arises from the legal obligation of patent applicants to properly disclose their invention. One way to study the relationship between current patents and their antecedents is by analyzing the similarity between the textual elements of patents. Many patent similarity indicators have shown a constant decrease since the mid-70s. Although several explanations have been proposed, more comprehensive analyses of this phenomenon have been rare. In this paper, we use a computationally efficient measure of patent similarity scores that leverages state-of-the-art Natural Language Processing tools, to investigate potential drivers of this apparent similarity decrease. This is achieved by modeling patent similarity scores by means of generalized additive models. We found that non-linear modeling specifications are able to distinguish between distinct, temporally varying drivers of the patent similarity levels that explain more variation in the data (R2 ∼ 18%) compared to previous methods. Moreover, the model reveals an underlying trend in similarity scores that is fundamentally different from the one presented previously.


Asunto(s)
Invenciones , Procesamiento de Lenguaje Natural
5.
Schizophr Res ; 239: 95-102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871996

RESUMEN

The clinical staging model distinguishes different stages of mental illness. Early stages, are suggested to be more mild, diffuse and volatile in terms of expression of psychopathology than later stages. This study aimed to compare individual transdiagnostic symptom networks based on intensive longitudinal data between individuals in different early clinical stages for psychosis. It was hypothesized that with increasing clinical stage (i) density of symptom networks would increase and (ii) psychotic experiences would be more central in the symptom networks. Data came from a 90-day diary study, resulting in 8640 observations within N = 96 individuals, divided over four subgroups representing different early clinical stages (n1 = 25, n2 = 27, n3 = 24, n4 = 20). Sparse Time Series Chain Graphical Models were used to create individual contemporaneous and temporal symptom networks based on 10 items concerning symptoms of depression, anxiety, psychosis, non-specific and vulnerability domains. Network density and symptom centrality (strength) were calculated individually and compared between and within the four subgroups. Level of psychopathology increased with clinical stage. The symptom networks showed large between-individual variation, but neither network density not psychotic symptom strength differed between the subgroups in the contemporaneous (pdensity = 0.59, pstrength > 0.51) and temporal (pdensity = 0.75, pstrength > 0.35) networks. No support was found for our hypothesis that higher clinical stage comes with higher symptom network density or a more central role for psychotic symptoms. Based on the high inter-individual variability, our results highlight the importance of individualized assessment of symptom networks.


Asunto(s)
Trastornos Psicóticos , Ansiedad , Trastornos de Ansiedad , Humanos , Psicopatología , Trastornos Psicóticos/diagnóstico
6.
PLoS One ; 16(9): e0257455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34550990

RESUMEN

Detail is a double edged sword in epidemiological modelling. The inclusion of mechanistic detail in models of highly complex systems has the potential to increase realism, but it also increases the number of modelling assumptions, which become harder to check as their possible interactions multiply. In a major study of the Covid-19 epidemic in England, Knock et al. (2020) fit an age structured SEIR model with added health service compartments to data on deaths, hospitalization and test results from Covid-19 in seven English regions for the period March to December 2020. The simplest version of the model has 684 states per region. One main conclusion is that only full lockdowns brought the pathogen reproduction number, R, below one, with R ≫ 1 in all regions on the eve of March 2020 lockdown. We critically evaluate the Knock et al. epidemiological model, and the semi-causal conclusions made using it, based on an independent reimplementation of the model designed to allow relaxation of some of its strong assumptions. In particular, Knock et al. model the effect on transmission of both non-pharmaceutical interventions and other effects, such as weather, using a piecewise linear function, b(t), with 12 breakpoints at selected government announcement or intervention dates. We replace this representation by a smoothing spline with time varying smoothness, thereby allowing the form of b(t) to be substantially more data driven, and we check that the corresponding smoothness assumption is not driving our results. We also reset the mean incubation time and time from first symptoms to hospitalisation, used in the model, to values implied by the papers cited by Knock et al. as the source of these quantities. We conclude that there is no sound basis for using the Knock et al. model and their analysis to make counterfactual statements about the number of deaths that would have occurred with different lockdown timings. However, if fits of this epidemiological model structure are viewed as a reasonable basis for inference about the time course of incidence and R, then without very strong modelling assumptions, the pathogen reproduction number was probably below one, and incidence in substantial decline, some days before either of the first two English national lockdowns. This result coincides with that obtained by more direct attempts to reconstruct incidence. Of course it does not imply that lockdowns had no effect, but it does suggest that other non-pharmaceutical interventions (NPIs) may have been much more effective than Knock et al. imply, and that full lockdowns were probably not the cause of R dropping below one.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Modelos Estadísticos , COVID-19/epidemiología , Epidemias , Hospitalización , Humanos
7.
PLoS Comput Biol ; 17(8): e1009259, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383741

RESUMEN

In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid ß-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state. By a modular kinetic approach we traced the origin and causes of the bistability back to the distributive kinetics and the conservation of CoA, in particular in the last rounds of the ß-oxidation. We then extended the model to investigate various interventions that may confer health benefits by activating the pathway, including (i) activation of the last enzyme MCKAT via its endogenous regulator p46-SHC protein, (ii) addition of a thioesterase (an acyl-CoA hydrolysing enzyme) as a safety valve, and (iii) concomitant activation of a number of upstream and downstream enzymes by short-chain fatty-acids (SCFA), metabolites that are produced from nutritional fibers in the gut. A high concentration of SCFAs, thioesterase activity, and inhibition of the p46Shc protein led to a disappearance of the bistability, leaving only the high-flux state. A better understanding of the switch behavior of the mitochondrial fatty-acid oxidation process between a low- and a high-flux state may lead to dietary and pharmacological intervention in the treatment or prevention of obesity and or non-alcoholic fatty-liver disease.


Asunto(s)
Ácidos Grasos/metabolismo , Modelos Biológicos , Acetil-CoA C-Aciltransferasa/antagonistas & inhibidores , Acetil-CoA C-Aciltransferasa/metabolismo , Animales , Biología Computacional , Simulación por Computador , Estabilidad de Enzimas , Ácidos Grasos/química , Humanos , Cinética , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo
9.
Genetics ; 214(4): 781-807, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32015018

RESUMEN

Genetic variance of a phenotypic trait can originate from direct genetic effects, or from indirect effects, i.e., through genetic effects on other traits, affecting the trait of interest. This distinction is often of great importance, for example, when trying to improve crop yield and simultaneously control plant height. As suggested by Sewall Wright, assessing contributions of direct and indirect effects requires knowledge of (1) the presence or absence of direct genetic effects on each trait, and (2) the functional relationships between the traits. Because experimental validation of such relationships is often unfeasible, it is increasingly common to reconstruct them using causal inference methods. However, most current methods require all genetic variance to be explained by a small number of quantitative trait loci (QTL) with fixed effects. Only a few authors have considered the "missing heritability" case, where contributions of many undetectable QTL are modeled with random effects. Usually, these are treated as nuisance terms that need to be eliminated by taking residuals from a multi-trait mixed model (MTM). But fitting such an MTM is challenging, and it is impossible to infer the presence of direct genetic effects. Here, we propose an alternative strategy, where genetic effects are formally included in the graph. This has important advantages: (1) genetic effects can be directly incorporated in causal inference, implemented via our PCgen algorithm, which can analyze many more traits; and (2) we can test the existence of direct genetic effects, and improve the orientation of edges between traits. Finally, we show that reconstruction is much more accurate if individual plant or plot data are used, instead of genotypic means. We have implemented the PCgen-algorithm in the R-package pcgen.


Asunto(s)
Productos Agrícolas/genética , Modelos Genéticos , Redes Reguladoras de Genes , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
10.
Biostatistics ; 21(2): e131-e147, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30380025

RESUMEN

Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios. These methods typically induce sparsity by means of a coincidental match of the geometry of the convex likelihood and a (near) non-convex regularizer. The disadvantages of such methods are that they are typically non-invariant to scale changes of the covariates, they struggle with highly correlated covariates, and they have a practical problem of determining the amount of regularization. In this article, we propose an extension of the differential geometric least angle regression method for sparse inference in relative risk regression models. A software implementation of our method is available on github (https://github.com/LuigiAugugliaro/dgcox).


Asunto(s)
Bioestadística/métodos , Modelos Estadísticos , Medición de Riesgo/métodos , Análisis de Supervivencia , Simulación por Computador , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Análisis de Regresión
11.
J Pediatr Gastroenterol Nutr ; 69(1): 131-136, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31058782

RESUMEN

OBJECTIVE: Antibiotic treatment in early life appears to increase the risk for childhood overweight and obesity. So far, the association between antibiotics administrated specifically during the first week of life and growth has not been studied. Therefore, we studied the association between growth and antibiotics, given in the first week of life and antibiotic courses later in the first year of life. METHOD: A prospective observational birth cohort of 436 term infants with 151 receiving broad-spectrum antibiotics for suspected neonatal infection (AB+), and 285 healthy controls (AB-) was followed during their first year. Weight, height, and additional antibiotic courses were collected monthly. A generalized-additive-mixed-effects model was used to fit the growth data. Growth curve estimation was controlled for differences in sex, gestational age, delivery mode, exclusive breast-feeding, tobacco exposure, presence of siblings, and additional antibiotic courses. RESULTS: Weight-for-age and length-for-age increase was lower in AB+ compared with AB- (P < 0.0001), resulting in a lower weight and length increase 6.26 kg (standard error [SE] 0.07 kg) and 25.4 cm (SE 0.27 cm) versus 6.47 kg (SE 0.06 kg) and 26.4 cm (SE 0.21 cm) (P < 0.05 and P < 0.005, respectively) in the first year of life. Approximately 30% of the children in both groups received additional antibiotic course(s) in their first year, whereafter additional weight gain of 76 g per course was observed (P = 0.0285). CONCLUSIONS: Decreased growth was observed after antibiotics in the first week of life, whereas increased growth was observed after later antibiotic course(s) in term born infants in the first year of life. Therefore, timing of antibiotics may determine the association with growth.


Asunto(s)
Antibacterianos/administración & dosificación , Estatura/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Crecimiento/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Estudios de Casos y Controles , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Obesidad Infantil/etiología , Estudios Prospectivos
12.
Twin Res Hum Genet ; 22(1): 4-13, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30944055

RESUMEN

Large multigenerational cohort studies offer powerful ways to study the hereditary effects on various health outcomes. However, accounting for complex kinship relations in big data structures can be methodologically challenging. The traditional kinship model is computationally infeasible when considering thousands of individuals. In this article, we propose a computationally efficient alternative that employs fractional relatedness of family members through a series of founding members. The primary goal of this study is to investigate whether the effect of determinants on health outcome variables differs with and without accounting for family structure. We compare a fixed-effects model without familial effects with several variance components models that account for heritability and shared environment structure. Our secondary goal is to apply the fractional relatedness model in a realistic setting. Lifelines is a three-generation cohort study investigating the biological, behavioral, and environmental determinants of healthy aging. We analyzed a sample of 89,353 participants from 32,452 reconstructed families. Our primary conclusion is that the effect of determinants on health outcome variables does not differ with and without accounting for family structure. However, accounting for family structure through fractional relatedness allows for estimating heritability in a computationally efficient way, showing some interesting differences between physical and mental quality of life heritability. We have shown through simulations that the proposed fractional relatedness model performs better than the standard kinship model, not only in terms of computational time and convenience of fitting using standard functions in R, but also in terms of bias of heritability estimates and coverage.


Asunto(s)
Envejecimiento/genética , Macrodatos , Bases de Datos Genéticas , Familia , Interacción Gen-Ambiente , Modelos Genéticos , Femenino , Humanos , Masculino
13.
Bioinformatics ; 35(7): 1083-1093, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184062

RESUMEN

MOTIVATION: Linkage maps are used to identify the location of genes responsible for traits and diseases. New sequencing techniques have created opportunities to substantially increase the density of genetic markers. Such revolutionary advances in technology have given rise to new challenges, such as creating high-density linkage maps. Current multiple testing approaches based on pairwise recombination fractions are underpowered in the high-dimensional setting and do not extend easily to polyploid species. To remedy these issues, we propose to construct linkage maps using graphical models either via a sparse Gaussian copula or a non-paranormal skeptic approach. RESULTS: We determine linkage groups, typically chromosomes, and the order of markers in each linkage group by inferring the conditional independence relationships among large numbers of markers in the genome. Through simulations, we illustrate the utility of our map construction method and compare its performance with other available methods, both when the data are clean and contain no missing observations and when data contain genotyping errors. Our comprehensive map construction method makes full use of the dosage SNP data to reconstruct linkage map for any bi-parental diploid and polyploid species. We apply the proposed method to three genotype datasets: barley, peanut and potato from diploid and polyploid populations. AVAILABILITY AND IMPLEMENTATION: The method is implemented in the R package netgwas which is freely available at https://cran.r-project.org/web/packages/netgwas. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Polimorfismo de Nucleótido Simple , Poliploidía , Mapeo Cromosómico , Ligamiento Genético , Genotipo
14.
Int J Biostat ; 14(2)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30173203

RESUMEN

One of the basic aims of science is to unravel the chain of cause and effect of particular systems. Especially for large systems, this can be a daunting task. Detailed interventional and randomized data sampling approaches can be used to resolve the causality question, but for many systems, such interventions are impossible or too costly to obtain. Recently, Maathuis et al. (2010), following ideas from Spirtes et al. (2000), introduced a framework to estimate causal effects in large scale Gaussian systems. By describing the causal network as a directed acyclic graph it is a possible to estimate a class of Markov equivalent systems that describe the underlying causal interactions consistently, even for non-Gaussian systems. In these systems, causal effects stop being linear and cannot be described any more by a single coefficient. In this paper, we derive the general functional form of a causal effect in a large subclass of non-Gaussian distributions, called the non-paranormal. We also derive a convenient approximation, which can be used effectively in estimation. We show that the estimate is consistent under certain conditions and we apply the method to an observational gene expression dataset of the Arabidopsis thaliana circadian clock system.


Asunto(s)
Bioestadística/métodos , Interpretación Estadística de Datos , Modelos Estadísticos , Distribuciones Estadísticas , Arabidopsis/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología
15.
Phys Rev E ; 97(6-1): 062407, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011543

RESUMEN

Feedback loops are typical motifs appearing in gene regulatory networks. In some well-studied model organisms, including Escherichia coli, autoregulated genes, i.e., genes that activate or repress themselves through their protein products, are the only feedback interactions. For these types of interactions, the Michaelis-Menten (MM) formulation is a suitable and widely used approach, which always leads to stable steady-state solutions representative of homeostatic regulation. However, in many other biological phenomena, such as cell differentiation, cancer progression, and catastrophes in ecosystems, one might expect to observe bistable switchlike dynamics in the case of strong positive autoregulation. To capture this complex behavior we use the generalized family of MM kinetic models. We give a full analysis regarding the stability of autoregulated genes. We show that the autoregulation mechanism has the capability to exhibit diverse cellular dynamics including hysteresis, a typical characteristic of bistable systems, as well as irreversible transitions between bistable states. We also introduce a statistical framework to estimate the kinetics parameters and probability of different stability regimes given observational data. Empirical data for the autoregulated gene SCO3217 in the SOS system in Streptomyces coelicolor are analyzed. The coupling of a statistical framework and the mathematical model can give further insight into understanding the evolutionary mechanisms toward different cell fates in various systems.

16.
Curr Opin Microbiol ; 42: 71-78, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29154077

RESUMEN

According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells.


Asunto(s)
Escherichia coli/fisiología , Redes y Vías Metabólicas/genética , Fenómenos Fisiológicos Celulares , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Biosíntesis de Proteínas
17.
Biom J ; 59(6): 1301-1316, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28664629

RESUMEN

Model-based clustering is a technique widely used to group a collection of units into mutually exclusive groups. There are, however, situations in which an observation could in principle belong to more than one cluster. In the context of next-generation sequencing (NGS) experiments, for example, the signal observed in the data might be produced by two (or more) different biological processes operating together and a gene could participate in both (or all) of them. We propose a novel approach to cluster NGS discrete data, coming from a ChIP-Seq experiment, with a mixture model, allowing each unit to belong potentially to more than one group: these multiple allocation clusters can be flexibly defined via a function combining the features of the original groups without introducing new parameters. The formulation naturally gives rise to a 'zero-inflation group' in which values close to zero can be allocated, acting as a correction for the abundance of zeros that manifest in this type of data. We take into account the spatial dependency between observations, which is described through a latent conditional autoregressive process that can reflect different dependency patterns. We assess the performance of our model within a simulation environment and then we apply it to ChIP-seq real data.


Asunto(s)
Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Estadísticos , Análisis de Secuencia de ADN , Análisis por Conglomerados , Proteína p300 Asociada a E1A/genética , Humanos
18.
PLoS One ; 12(6): e0178586, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570696

RESUMEN

BACKGROUND: Differences in within-person emotion dynamics may be an important source of heterogeneity in depression. To investigate these dynamics, researchers have previously combined multilevel regression analyses with network representations. However, sparse network methods, specifically developed for longitudinal network analyses, have not been applied. Therefore, this study used this approach to investigate population-level and individual-level emotion dynamics in healthy and depressed persons and compared this method with the multilevel approach. METHODS: Time-series data were collected in pair-matched healthy persons and major depressive disorder (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA) items were administered electronically at 90 times (30 days; thrice per day). The population-level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longitudinal network model based on vector autoregression. The population-level model was also estimated with a multilevel approach. Effects of different preprocessing steps were evaluated as well. The characteristics of the longitudinal networks were investigated to gain insight into the emotion dynamics. RESULTS: In the population-level networks, longitudinal network connectivity was strongest in the healthy group, with nodes showing more and stronger longitudinal associations with each other. Individually estimated networks varied strongly across individuals. Individual variations in network connectivity were unrelated to baseline characteristics (depression status, neuroticism, severity). A multilevel approach applied to the same data showed higher connectivity in the MDD group, which seemed partly related to the preprocessing approach. CONCLUSIONS: The sparse network approach can be useful for the estimation of networks with multiple nodes, where overparameterization is an issue, and for individual-level networks. However, its current inability to model random effects makes it less useful as a population-level approach in case of large heterogeneity. Different preprocessing strategies appeared to strongly influence the results, complicating inferences about network density.


Asunto(s)
Trastorno Depresivo Mayor/psicología , Emociones , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
19.
Mol Cell ; 65(2): 285-295, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989441

RESUMEN

Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders.


Asunto(s)
Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Metabolismo Energético , Periodicidad , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Quinasas Ciclina-Dependientes/genética , Genotipo , Microscopía Fluorescente , Microscopía por Video , Modelos Biológicos , Mutación , NADP/metabolismo , Oscilometría , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
20.
BMC Bioinformatics ; 17(1): 352, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27597310

RESUMEN

BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. RESULTS: We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. CONCLUSIONS: NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Programas Informáticos , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genes Fúngicos , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...