Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190117, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983335

RESUMEN

Expanding the network of protected areas is a core strategy for conserving biodiversity in the face of climate change. Here, we explore the impacts on reserve network cost and configuration associated with planning for climate change in the USA using networks that prioritize areas projected to be climatically suitable for 1460 species both today and into the future, climatic refugia and areas likely to facilitate climate-driven species movements. For 14% of the species, networks of sites selected solely to protect areas currently climatically suitable failed to provide climatically suitable habitat in the future. Protecting sites climatically suitable for species today and in the future significantly changed the distribution of priority sites across the USA-increasing relative protection in the northeast, northwest and central USA. Protecting areas projected to retain their climatic suitability for species cost 59% more than solely protecting currently suitable areas. Including all climatic refugia and 20% of areas that facilitate climate-driven movements increased the cost by another 18%. Our results indicate that protecting some types of climatic refugia may be a relatively inexpensive adaptation strategy. Moreover, although addressing climate change in conservation plans will have significant implications for the configuration of networks, the increased cost of doing so may be relatively modest. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Distribución Animal , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Parques Recreativos/economía , Dispersión de las Plantas , Refugio de Fauna , Cambio Climático/economía , Conservación de los Recursos Naturales/economía , Estados Unidos
2.
PLoS One ; 14(1): e0209619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625183

RESUMEN

Single species conservation unites disparate partners for the conservation of one species. However, there are widespread concerns that single species conservation biases conservation efforts towards charismatic species at the expense of others. Here we investigate the extent to which sage grouse (Centrocercus sp.) conservation, the largest public-private conservation effort for a single species in the US, provides protections for other species from localized and landscape-scale threats. We compared the coverage provided by sage grouse Priority Areas for Conservation (PACs) to 81 sagebrush-associated vertebrate species distributions with potential coverage under multi-species conservation prioritization generated using the decision support tool Zonation. PACs. We found that the current PAC prioritization approach was not statistically different from a diversity-based prioritization approach and covers 23.3% of the landscape, and 24.8%, on average, of the habitat of the 81 species. The proportion of each species distribution at risk was lower inside PACs as compared to the region as a whole, even without management (land use change 30% lower, cheatgrass invasion 19% lower). Whether or not bias away from threat represents the most efficient use of conservation effort is a matter of considerable debate, though may be pragmatic in this landscape where capacity to address these threats is limited. The approach outlined here can be used to evaluate biological equitability of protections provided by flagship species in other settings.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Galliformes , Pradera , Animales , Artemisia
3.
Sci Rep ; 7(1): 1902, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507323

RESUMEN

Consistent with a warming climate, birds are shifting the timing of their migrations, but it remains unclear to what extent these shifts have kept pace with the changing environment. Because bird migration is primarily cued by annually consistent physiological responses to photoperiod, but conditions at their breeding grounds depend on annually variable climate, bird arrival and climate-driven spring events would diverge. We combined satellite and citizen science data to estimate rates of change in phenological interval between spring green-up and migratory arrival for 48 breeding passerine species across North America. Both arrival and green-up changed over time, usually in the same direction (earlier or later). Although birds adjusted their arrival dates, 9 of 48 species did not keep pace with rapidly changing green-up and across all species the interval between arrival and green-up increased by over half a day per year. As green-up became earlier in the east, arrival of eastern breeding species increasingly lagged behind green-up, whereas in the west-where green-up typically became later-birds arrived increasingly earlier relative to green-up. Our results highlight that phenologies of species and trophic levels can shift at different rates, potentially leading to phenological mismatches with negative fitness consequences.


Asunto(s)
Migración Animal , Aves/fisiología , Estaciones del Año , Animales , Clima , Ecosistema , Ambiente , Geografía , América del Norte
4.
Ecol Appl ; 25(1): 160-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255365

RESUMEN

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.


Asunto(s)
Animales Salvajes , Ecosistema , Vertebrados/fisiología , Agroquímicos , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Actividades Humanas , Modelos Teóricos , Sudeste de Estados Unidos , Factores de Tiempo , Urbanización
5.
Proc Natl Acad Sci U S A ; 111(20): 7492-7, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799685

RESUMEN

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura/métodos , Anfibios , Animales , Biodiversidad , Aves , Carbono/química , Conservación de los Recursos Naturales/economía , Abastecimiento de Alimentos , Geografía , Modelos Econométricos , Política Pública , Árboles , Estados Unidos
6.
Ecol Lett ; 15(11): 1249-1256, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22913646

RESUMEN

Efficient conservation planning requires knowledge about conservation targets, threats to those targets, costs of conservation and the marginal return to additional conservation efforts. Systematic conservation planning typically only takes a small piece of this complex puzzle into account. Here, we use a return-on-investment (ROI) approach to prioritise lands for conservation at the county level in the conterminous USA. Our approach accounts for species richness, county area, the proportion of species' ranges already protected, the threat of land conversion and land costs. Areas selected by a complementarity-based greedy heuristic using our full ROI approach provided greater averted species losses per dollar spent compared with areas selected by heuristics accounting for richness alone or richness and cost, and avoided acquiring lands not threatened with conversion. In contrast to traditional prioritisation approaches, our results highlight conservation bargains, opportunities to avert the threat of development and places where conservation efforts are currently lacking.


Asunto(s)
Conservación de los Recursos Naturales/economía , Modelos Teóricos , Biodiversidad , Análisis Costo-Beneficio , Estados Unidos
7.
J Vector Ecol ; 32(1): 22-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17633422

RESUMEN

Climatic and landscape patterns have been associated with both relative mosquito abundance and transmission of mosquito-borne illnesses in many parts of the world, especially warm and tropical climes. To determine if temperature, precipitation, or degree of urbanization were similarly important in the number of potential mosquito vectors for West Nile virus in the moderately temperate climate of western Washington, mosquitoes were collected using CDC carbon-dioxide/light traps set throughout the Seattle region during the summers of 2003 and 2004. The type and abundance of recovered species were compared to ecological correlates. Temperature and mosquito abundance were positively correlated, while precipitation was not strongly correlated with numbers of mosquitoes. Potential WNV mosquito vectors were most abundant in urban and suburban sites, including sites near communal roosts of American crows (Corvus brachyrhynchos). Exurban sites had the greatest vector species diversity, and Culex pipiens was the most abundant species throughout the region.


Asunto(s)
Culicidae/virología , Insectos Vectores/virología , Virus del Nilo Occidental/aislamiento & purificación , Animales , Clima , Ecología , Geografía , Temperatura , Washingtón , Virus del Nilo Occidental/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...