Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Natl Cancer Inst ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574391

RESUMEN

Fusion oncoproteins are associated with childhood cancers and have proven challenging to target, aside from those that include kinases. As part of its efforts for targeting childhood cancers, the National Cancer Institute recently conducted a series on 'Novel Chemical Approaches for Targeting Fusion Oncoproteins'. Key learnings on leading platforms and technologies which can be utilized to advance the development of molecular therapeutics that target fusion oncoproteins in childhood cancers are described. Recent breakthroughs in medicinal chemistry and chemical biology provide new ground and creative strategies to exploit for the development of targeted agents for improving outcomes against these recalcitrant cancers.

2.
Cancer Biol Ther ; 16(1): 21-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25455629

RESUMEN

The transcriptome is extensively and dynamically regulated by a network of RNA modifying factors. RNA editing enzymes APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and ADAR (adenosine deaminase, RNA-specific) irreversibly recode primary RNA sequences, whereas newly described methylases (writers) and de-methylases (erasers) dynamically alter RNA molecules in response to environmental conditions. RNA modifications can affect RNA splicing, nuclear-cytoplasmic transport, translation, and regulation of gene expression by RNA interference. In addition, tRNA base modifications, processing, and regulated cleavage have been shown to alter global patterns of mRNA translation in response to cellular stress pathways. Recent studies, some of which were discussed at this workshop, have rekindled interest in the emerging roles of RNA modifications in health and disease. On September 10th, 2014, the Division of Cancer Biology, NCI sponsored a workshop to explore the role of epitranscriptomic RNA modifications and tRNA processing in cancer progression. The workshop attendees spanned a scientific range including chemists, virologists, and RNA and cancer biologists. The goal of the workshop was to explore the interrelationships between RNA editing, epitranscriptomics, and RNA processing and the enzymatic pathways that regulate these activities in cancer initiation and progression. At the conclusion of the workshop, a general discussion focused on defining the major challenges and opportunities in this field, as well as identifying the tools, technologies, resources and community efforts required to accelerate research in this emerging area.


Asunto(s)
Epigénesis Genética , Neoplasias/genética , Neoplasias/patología , Edición de ARN , Transcriptoma , Desaminasas APOBEC-1 , Animales , Citidina Desaminasa/metabolismo , Progresión de la Enfermedad , Humanos
3.
Curr Biol ; 22(12): 1128-33, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22658600

RESUMEN

The mechanisms that dictate nuclear shape are largely unknown. Here we screened the budding yeast deletion collection for mutants with abnormal nuclear shape. A common phenotype was the appearance of a nuclear extension, particularly in mutants in DNA repair and chromosome segregation genes. Our data suggest that these mutations led to the abnormal nuclear morphology indirectly, by causing a checkpoint-induced cell-cycle delay. Indeed, delaying cells in mitosis by other means also led to the appearance of nuclear extensions, whereas inactivating the DNA damage checkpoint pathway in a DNA repair mutant reduced the fraction of cells with nuclear extensions. Formation of a nuclear extension was specific to a mitotic delay, because cells arrested in S or G2 had round nuclei. Moreover, the nuclear extension always coincided with the nucleolus, while the morphology of the DNA mass remained largely unchanged. Finally, we found that phospholipid synthesis continued unperturbed when cells delayed in mitosis, and inhibiting phospholipid synthesis abolished the formation of nuclear extensions. Our data suggest a mechanism that promotes nuclear envelope expansion during mitosis. When mitotic progression is delayed, cells sequester the added membrane to the nuclear envelope associated with the nucleolus, possibly to avoid disruption of intranuclear organization.


Asunto(s)
Núcleo Celular/fisiología , Mitosis/fisiología , Membrana Nuclear/metabolismo , Forma de los Orgánulos/fisiología , Saccharomycetales/fisiología , Nucléolo Celular/metabolismo , Segregación Cromosómica/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Eliminación de Gen , Microscopía Fluorescente , Mitosis/genética , Fosfolípidos/biosíntesis , Saccharomycetales/genética
4.
Genetics ; 186(3): 867-83, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20713690

RESUMEN

The Saccharomyces cerevisiae nuclear membrane is part of a complex nuclear envelope environment also containing chromatin, integral and peripheral membrane proteins, and large structures such as nuclear pore complexes (NPCs) and the spindle pole body. To study how properties of the nuclear membrane affect nuclear envelope processes, we altered the nuclear membrane by deleting the SPO7 gene. We found that spo7Δ cells were sickened by the mutation of genes coding for spindle pole body components and that spo7Δ was synthetically lethal with mutations in the SUN domain gene MPS3. Mps3p is required for spindle pole body duplication and for a variety of other nuclear envelope processes. In spo7Δ cells, the spindle pole body defect of mps3 mutants was exacerbated, suggesting that nuclear membrane composition affects spindle pole body function. The synthetic lethality between spo7Δ and mps3 mutants was suppressed by deletion of specific nucleoporin genes. In fact, these gene deletions bypassed the requirement for Mps3p entirely, suggesting that under certain conditions spindle pole body duplication can occur via an Mps3p-independent pathway. These data point to an antagonistic relationship between nuclear pore complexes and the spindle pole body. We propose a model whereby nuclear pore complexes either compete with the spindle pole body for insertion into the nuclear membrane or affect spindle pole body duplication by altering the nuclear envelope environment.


Asunto(s)
Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Huso Acromático/metabolismo , Alelos , Eliminación de Gen , Dosificación de Gen/genética , Genes Supresores , Membrana Nuclear/ultraestructura , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/ultraestructura , Supresión Genética
5.
J Cell Sci ; 122(Pt 10): 1477-86, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19420234

RESUMEN

The nucleus is one of the most prominent cellular organelles, yet surprisingly little is known about how it is formed, what determines its shape and what defines its size. As the nuclear envelope (NE) disassembles in each and every cell cycle in metazoans, the process of rebuilding the nucleus is crucial for proper development and cell proliferation. In this Commentary, we summarize what is known about the regulation of nuclear shape and size, and highlight recent findings that shed light on the process of building a nucleus, including new discoveries related to NE assembly and the relationship between the NE and the endoplasmic reticulum (ER). Throughout our discussion, we note interesting aspects of nuclear structure that have yet to be resolved. Finally, we present an idea - which we refer to as ;the limited flat membrane hypothesis' - to explain the formation of a single nucleus that encompasses of all of the cell's chromosomes following mitosis.


Asunto(s)
Forma del Núcleo Celular , Tamaño del Núcleo Celular , Mitosis , Membrana Nuclear/fisiología , Animales , Retículo Endoplásmico/fisiología , Humanos , Poro Nuclear/fisiología
6.
Mol Cell Biol ; 27(6): 2074-83, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17220281

RESUMEN

Telomerase replenishes the telomeric repeats that cap eukaryotic chromosome ends. To perform DNA synthesis, the active site of telomerase reverse transcriptase (TERT) copies a template within the integral telomerase RNA (TER). In vivo, TERT and TER and additional subunits form a telomerase holoenzyme capable of telomere elongation. We previously purified epitope-tagged Tetrahymena thermophila TERT and characterized two of the associated proteins. Here we characterize the remaining two proteins that were enriched by TERT purification. The primary sequence of the p75 polypeptide lacks evident homology with other proteins, whereas the p20 polypeptide is the Tetrahymena ortholog of a conserved multifunctional protein, Skp1. Genetic depletion of p75 induced telomere shortening without affecting the accumulation of TER or TERT, suggesting that p75 promotes telomerase function at the telomere. Affinity purification of p75 coenriched telomerase activity and each other known telomerase holoenzyme protein. On the other hand, genetic depletion of Skp1p induced telomere elongation, suggesting that this protein plays a negative regulatory role in the maintenance of telomere length homeostasis. Affinity purification of Skp1p did not detectably enrich active telomerase but did copurify ubiquitin ligase machinery. These studies reveal additional complexity in the positive and negative regulation of Tetrahymena telomerase function.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Telomerasa/metabolismo , Tetrahymena/enzimología , Animales , Anticuerpos/inmunología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Eliminación de Gen , Holoenzimas/genética , Holoenzimas/inmunología , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Péptidos/genética , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Fenotipo , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Telomerasa/genética , Telomerasa/inmunología , Telomerasa/aislamiento & purificación , Tetrahymena/genética
7.
Mol Biol Cell ; 17(4): 1768-78, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16467382

RESUMEN

Little is known about what dictates the round shape of the yeast Saccharomyces cerevisiae nucleus. In spo7Delta mutants, the nucleus is misshapen, exhibiting a single protrusion. The Spo7 protein is part of a phosphatase complex that represses phospholipid biosynthesis. Here, we report that the nuclear protrusion of spo7Delta mutants colocalizes with the nucleolus, whereas the nuclear compartment containing the bulk of the DNA is unaffected. Using strains in which the nucleolus is not intimately associated with the nuclear envelope, we show that the single nuclear protrusion of spo7Delta mutants is not a result of nucleolar expansion, but rather a property of the nuclear membrane. We found that in spo7Delta mutants the peripheral endoplasmic reticulum (ER) membrane was also expanded. Because the nuclear membrane and the ER are contiguous, this finding indicates that in spo7Delta mutants all ER membranes, with the exception of the membrane surrounding the bulk of the DNA, undergo expansion. Our results suggest that the nuclear envelope has distinct domains that differ in their ability to resist membrane expansion in response to increased phospholipid biosynthesis. We further propose that in budding yeast there is a mechanism, or structure, that restricts nuclear membrane expansion around the bulk of the DNA.


Asunto(s)
Núcleo Celular/ultraestructura , Proteínas de la Membrana/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Nucléolo Celular/ultraestructura , Núcleo Celular/química , Núcleo Celular/genética , Cromosomas Fúngicos/ultraestructura , ADN Ribosómico/ultraestructura , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Eliminación de Gen , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Fosfolípidos/biosíntesis , Proteínas de Unión al ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Struct Mol Biol ; 12(3): 252-7, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15696174

RESUMEN

Telomerase maintains the simple sequence repeats at chromosome ends, protecting cells from genomic rearrangement, proliferative senescence and death. The telomerase reverse transcriptase (TERT) and telomerase RNA (TER) alone can assemble into active enzyme in a heterologous cell extract, but the physiological process of telomerase biogenesis is more complex. The endogenous accumulation of Tetrahymena thermophila TERT and TER requires an additional telomerase holoenzyme protein, p65. Here, we reconstitute this cellular pathway for telomerase ribonucleoprotein biogenesis in vitro. We demonstrate that tandem RNA interaction domains in p65 recognize the sequence of the TER 3' stem. Notably, the p65-TER complex recruits TERT much more efficiently than does TER alone. Using bacterially expressed p65 and TERT polypeptides, we show that p65 enhances TERT-TER interaction by a mechanism involving a conserved bulge in the protein-bridging TER molecule. These findings reveal a pathway for telomerase holoenzyme biogenesis that preassembles TER for TERT recruitment.


Asunto(s)
Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Proteínas Protozoarias/fisiología , ARN/metabolismo , Telomerasa/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión al ADN , Holoenzimas/metabolismo , Holoenzimas/fisiología , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína/fisiología , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/enzimología , Tetrahymena thermophila/metabolismo
9.
Genes Dev ; 18(10): 1107-18, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15131081

RESUMEN

Many proteins have been implicated in the physiological function of telomerase, but specific roles of telomerase-associated proteins other than telomerase reverse transcriptase (TERT) remain ambiguous. To gain a more comprehensive understanding of catalytically active enzyme composition, we performed affinity purification of epitope-tagged, endogenously assembled Tetrahymena telomerase. We identified and cloned genes encoding four telomerase proteins in addition to TERT. We demonstrate that both of the two new proteins characterized in detail, p65 and p45, have essential roles in the maintenance of telomere length as part of a ciliate telomerase holoenzyme. The p65 subunit contains an La motif characteristic of a family of direct RNA-binding proteins. We find that p65 in cell extract is associated specifically with telomerase RNA, and that genetic depletion of p65 reduces telomerase RNA accumulation in vivo. These findings demonstrate that telomerase holoenzyme proteins other than TERT play critical roles in RNP biogenesis and function.


Asunto(s)
Telomerasa/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN , Genes Protozoarios , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/fisiología , Datos de Secuencia Molecular , Subunidades de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , ARN Protozoario/genética , ARN Protozoario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Telomerasa/química , Telomerasa/genética , Tetrahymena thermophila/enzimología , Tetrahymena thermophila/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...